Absolute Value Functions

The absolute value function turns its argument (the part inside the bars) into a positive output.

$$
|5|=5 \quad|-5|=5
$$

Given: $f(x)=|3 x-2|$ and $g(x)=-2|3-x|-3$
Evaluate $f(-3)$
Evaluate $\mathrm{g}(1)$
$f(-3)=|3(-3)-2|$
$f(-3)=|-9-2|$
$g(1)=-2|3-(1)|-3$
$g(1)=-2|2|-3$
$f(-3)=|-11|$
$g(1)=-2 \times 2-3$
$f(-3)=11$
$g(1)=-4-3, g(1)=-7$

The graph of abs. value looks like a "V."

If there is a negative in front of the abs. value, then it faces downward " \wedge "

Abs. value functions have a vertex (h, k) just like quadratics: $f(x)=a|x-h|+k$

Abs. value graphs are like two linear functions stuck together. They will have opposite sign slopes
(i.e. 3 on one side and -3 on the other).

What are the slopes and vertex for each function? Which way do the functions open?

$$
f(x)=\frac{-3}{2}|x-3|+1
$$

Vertex: (3, 1); Slopes: 3/2 and -3/2; Opens: down

$$
g(x)=|4 x-2|-3
$$

Factor out a 4 inside first: $g(x)=\left|4\left(x-\frac{1}{2}\right)\right|-3$
Vertex: $(1 / 2,-3)$; Slopes: 4 and -4 ; Opens: up $h(x)=\frac{1}{2}|-5 x-5|-2$
Factor out a -5 inside first: $h(x)=\frac{1}{2}|-5(x+1)|-2$
Vertex: (-1, -2); Slopes: 5/2 and -5/2; Opens: up

Graph the function: $f(x)=-1 / 3|x+1|+2$

Vertex: (-1, 2)
Slopes: $1 / 3$ and $-1 / 3$
Opens: downward
y-intercept: ($0,1 . \overline{6}$)
x-intercept(s):(-7, 0) and (5, 0)
Decreasing: $(-1, \infty)$
Increasing: $(-\infty,-1)$
Domain: $(-\infty, \infty)$
Range: $(-\infty, 2]$
End behavior:
As $x \rightarrow \infty, f(x) \rightarrow-\infty$,
As $x \rightarrow-\infty, f(x) \rightarrow-\infty$

