Add and Subtract Polynomials

Adding and subtracting polynomials is a simple as combining like terms.

Add: $\left(4 x^{3}-5 x^{5}+3 x\right)+\left(4-4 x^{3}+x^{4}+x\right)$

$$
\begin{array}{ll}
\left(4 x^{3}-5 x^{5}+3 x\right)+\left(4-4 x^{3}+x^{4}+x\right) & \text { Identify like terms } \\
-5 x^{5}+x^{4}+4 x+4 & \begin{array}{l}
\text { Combine like terms } \\
\text { and put in standard } \\
\text { form }
\end{array}
\end{array}
$$

Subtract: $\left(x^{3}+5 x^{2}+9 x\right)-\left(x^{4}-x^{3}+2 x+3\right)$

$$
\begin{aligned}
& x^{3}+5 x^{2}+9 x-x^{4}+x^{3}-2 x-3 \\
& -x^{4}+2 x^{3}+5 x^{2}+7 x-3
\end{aligned}
$$

Distribute the negative

Combine like terms and put in standard form

Given: $\mathrm{A}(\mathrm{t})=\mathrm{t}^{2}-\mathrm{t}-5, \mathrm{~B}(\mathrm{t})=\mathrm{t}^{3}+3 \mathrm{t}+4$,
$D(t)=B(t)+A(t)$, and $E(t)=A(t)-B(t)$.

Evaluate $D(t)$ and $D(3)$.

$$
\begin{aligned}
& D(t)=B(t)+A(t) \\
& D(t)=t^{3}+3 t+4+t^{2}-t-5 \\
& D(t)=t^{3}+t^{2}+2 t-1 \\
& D(3)=(3)^{3}+(3)^{2}+2(3)-1 \quad D(3)=41
\end{aligned}
$$

Evaluate $\mathrm{E}(\mathrm{t})$ and $\mathrm{E}(-1)$.
$E(t)=A(t)-B(t)$
$\mathrm{E}(\mathrm{t})=\mathrm{t}^{2}-\mathrm{t}-5-\left(\mathrm{t}^{3}+3 \mathrm{t}+4\right)$
$E(t)=t^{2}-t-5-t^{3}-3 t-4$
$E(-1)=-(-1)^{3}+(-1)^{2}-4(-1)-9$
$E(t)=-t^{3}+t^{2}-4 t-9$
$E(-1)=-3$

$$
\left(x^{2} y^{3}-2 x^{2} y+3 x\right)+\left(2 x y^{2}+5 x+3 x^{2} y^{3}\right)
$$

$\left(x^{2} y^{3}-2 x^{2} y+3 x\right)+\left(2 x y^{2}+5 x+3 x^{2} y^{3}\right)$
$4 x^{2} y^{3}-2 x^{2} y+2 x y^{2}+8 x$

Identify like terms

Combine like terms and write in standard form
$-2 x^{2} y$ and $2 x y^{2}$ are not like terms, but they do have the same degree. Which one goes first?
The one with the x^{2} goes first since x^{2} is a greater power than x.

