Compound and Continuous Interest

Compound Interest is a common way used to collect interest on money.

Interest rate

Common \# of times compounded per year

Name	Times per year
Daily	$\mathrm{n}=365$
Weekly	$\mathrm{n}=52$
Monthly	$\mathrm{n}=12$
Quarterly	$\mathrm{n}=4$
Semi-Annually	$\mathrm{n}=2$
Annually / Yearly	$\mathrm{n}=1$

Simple interest is yearly $(\mathrm{n}=1)$ compound interest.

Sally puts $\$ 1,000$ into a savings account at her local bank. The saving account has a rate of $.45 \%$ that is compounded monthly. If Sally leaves the account alone, how much money will be in it after 5 years?

$$
\begin{gathered}
A(t)=P\left(1+\frac{r}{n}\right)^{n t} \\
A(t)=1000\left(1+\frac{.0045}{12}\right)^{12 t} \\
A(5)=1000\left(1+\frac{.0045}{12}\right)^{12(5)}
\end{gathered}
$$

$$
A(5)=\$ 1022.75
$$

Sally puts $\$ 1,000$ into a savings account at her local bank. The saving account has a rate of $.45 \%$ that is compounded daily. If Sally leaves the account alone, how much money will be in it after 5 years?

$$
\begin{gathered}
A(t)=P\left(1+\frac{r}{n}\right)^{n t} \\
A(t)=1000\left(1+\frac{.0045}{365}\right)^{365 t} \\
A(5)=1000\left(1+\frac{.0045}{365}\right)^{365(5)}
\end{gathered}
$$

$$
A(5)=\$ 1022.75
$$

Sally finds a consistent mutual fund that averages a return yield of 8%. Sally invests $\$ 1,000$ into the mutual fund and lets it sit for 5 years. Sally's mutual fund compounds quarterly.

$$
\begin{gathered}
A(t)=P\left(1+\frac{r}{n}\right)^{n t} \\
A(t)=1000\left(1+\frac{.08}{4}\right)^{4 t} \\
A(5)=1000\left(1+\frac{.08}{4}\right)^{4(5)}
\end{gathered}
$$

$$
A(5)=\$ 1485.95
$$

Continuous interest is compound interest compounded every second of every day.

Sally was intrigued by continuous interest. Surely, interest compounded every second of every day would provide for a large return. Sally found a savings account with a .45\% rate that compounded continuously. How much money did she have after 5 years?

$$
A(t)=P e^{r t}
$$

$$
\begin{gathered}
A(t)=1000 e^{0.0045 t} \\
A(5)=1000 e^{0.0045(5)} \\
A(5)=\$ 1022.76
\end{gathered}
$$

