Cubic and Cube Root as Inverses

The cubic function $y = x^3$ and the cube root function $y = \sqrt[3]{x}$ are inverse functions (and inverse operations).

y = x³ and y = $\sqrt[3]{x}$ are reflections over the line y = x.

If $y = x^3$ has the point (2,8), then $y = \sqrt[3]{x}$ has (8,2) Determine the inverse of $g(x) = \frac{5}{2}(x+1)^3 - 10$. $y = \frac{5}{2}(x+1)^3 - 10$ Write the equation in terms of x and y $x = \frac{5}{2}(y+1)^3 - 10$ Switch the x and y $x + 10 = \frac{5}{2}(y + 1)^3$ Solve for y: add 10 $\frac{2}{5}x + 4 = (y + 1)^3$ Solve for y: multiply by reciprocal of 5/2 $\sqrt[3]{\frac{2}{5}x + 4} = y + 1$ Solve for y: take the cube root of both sides $y = \sqrt[3]{\frac{2}{5}x + 4 - 1}$ Solve for y: subtract 1

Determine the inverse of h(x) = $2\sqrt[3]{2x} + 6$.

 $y = 2\sqrt[3]{2x} + 6$ $x = 2\sqrt[3]{2y} + 6$ $x - 6 = 2\sqrt[3]{2y}$ $\frac{1}{2}x - 3 = \sqrt[3]{2y}$ $\left(\frac{1}{2}x - 3\right)^3 = 2y$ $y = \frac{\left(\frac{1}{2}x - 3\right)^3}{2}$

Write the equation in terms of x and y

Switch the x and y

Solve for y: subtract 6

Solve for y: divide by 2

Solve for y: cube both sides

Solve for y: divide by 2

Use composition to show that $f(x) = 2(x-2)^3 + 1$ and $g(x) = \sqrt[3]{\frac{x-1}{2}} + 2$ are inverses. $2\left(\sqrt[3]{\frac{x-1}{2}} + 2 - 2\right)^3 + 1$ Substitute one function into the other.

x - 1 + 1

Cancel out the +2 and -2

The third power cancels out the cube root

Multiplying by 2 cancels out dividing by 2

-1 and +1 cancel each other leaving x. Since the equation simplified to x (and only x), the functions <u>are inverses</u>.