Cubic and Cube Root as Inverses

The cubic function $\mathrm{y}=x^{3}$ and the cube root function $\mathrm{y}=\sqrt[3]{x}$ are inverse functions (and inverse operations).

$y=x^{3}$ and $y=\sqrt[3]{x}$ are reflections
over the line $y=x$.

If $y=x^{3}$ has the point $(2,8)$, then $y=\sqrt[3]{x}$ has $(8,2)$

Determine the inverse of $\mathrm{g}(\mathrm{x})=\frac{5}{2}(x+1)^{3}-10$. $y=\frac{5}{2}(x+1)^{3}-10$

Write the equation in terms of x and y

Switch the x and y

Solve for y : add 10

Solve for y : multiply by reciprocal of 5/2

Solve for y : take the cube root of both sides

Solve for y : subtract 1

Determine the inverse of $\mathrm{h}(\mathrm{x})=2 \sqrt[3]{2 x}+6$.

$$
\begin{aligned}
& y=2 \sqrt[3]{2 x}+6 \\
& x=2 \sqrt[3]{2 y}+6 \\
& x-6=2 \sqrt[3]{2 y} \\
& \frac{1}{2} x-3=\sqrt[3]{2 y} \\
& \left(\frac{1}{2} x-3\right)^{3}=2 y \\
& y=\frac{\left(\frac{1}{2} x-3\right)^{3}}{2}
\end{aligned}
$$

Write the equation in terms of x and y

Switch the x and y

Solve for y : subtract 6

Solve for y : divide by 2

Solve for y : cube both sides

Solve for y : divide by 2

Use composition to show that $f(x)=2(x-2)^{3}+1$ and $g(x)=\sqrt[3]{\frac{x-1}{2}}+2$ are inverses.

$$
2\left(\sqrt[3]{\frac{x-1}{2}}+2-2\right)^{3}+1 \quad \text { Substitute one function into the other. }
$$

$$
2\left(\sqrt[3]{\frac{x-1}{2}}\right)^{3}+1
$$

Cancel out the +2 and -2

$$
2\left(\frac{x-1}{2}\right)+1
$$

The third power cancels out the cube root

$$
x-1+1
$$

Multiplying by 2 cancels out dividing by 2
-1 and +1 cancel each other leaving x. Since the equation simplified to x (and only x), the functions are inverses.

