Determinant of a Matrix

Square matrices ($2 \times 2,3 \times 3$, etc.) have a value called the determinant.

The determinant is used when finding the inverse of a matrix.

Determinants may be notated as $\operatorname{det}(A)$ or by using straight bars instead of brackets.

Matrix A

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Determinant of A
$\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|$

Determinant of a $\mathbf{2 x 2}$ Matrix

The determinant is the difference of the product of the diagonals.
Main diagonal - Other diagonal

Find...

$$
\left|\begin{array}{ll}
1 & 5 \\
4 & 8
\end{array}\right|
$$

$\left|\begin{array}{ll}1 & 5 \\ 4 & 8\end{array}\right|=(1)(8)-(4)(5)=8-20=-12$

$$
\left|\begin{array}{ll}
1 & 5 \\
4 & 8
\end{array}\right|=-12
$$

Find...

$$
\operatorname{det}\left[\begin{array}{cc}
2 & -3 \\
4 & 2
\end{array}\right]
$$

$$
\left|\begin{array}{cc}
2 & -3 \\
4 & 2
\end{array}\right|=(2)(2)-(4)(-3)=4-(-12)=16
$$

$$
\operatorname{det}\left[\begin{array}{cc}
2 & -3 \\
4 & 2
\end{array}\right]=16
$$

The determinant of matrix A is 4 . What is the value of x ?

$$
A=\left[\begin{array}{cc}
2 & x \\
-3 & -1
\end{array}\right]
$$

$$
\left|\begin{array}{cc}
2 & x \\
-3 & -1
\end{array}\right|=(2)(-1)-(-3)(x)=-2-(-3 x)=3 x-2
$$

$$
\begin{aligned}
& 3 x-2=4 \\
& 3 x=6 \\
& x=2
\end{aligned}
$$

Determinant of a 3×3 Matrix

Rewrite the first two columns to the right of the matrix.

Add the sum of the red diagonals, then subtract the sum of the blue diagonals.

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

Find the determinant of \mathbf{M}.

\(M=\left[$$
\begin{array}{lll}2 & 4 & 1 \\
5 & 2 & 3 \\
1 & 4 & 8\end{array}
$$\right] \quad \operatorname{det} M=\left|\begin{array}{lll}2 \& 4 \& 1

5 \& 2 \& 3

1 \& 4 \& 8\end{array}\right|\), so write $|$| 2 | 4 | 1 | 2 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| 5 | 2 | 3 | 5 | 2 |
| 1 | 4 | 8 | 1 | 4 |

Step 1 Multiply each "down" diagonal and add.

$$
2(2)(8)+4(3)(1)+1(5)(4)=64
$$

Step 2 Multiply each "up" diagonal and add.

$$
1(2)(1)+4(3)(2)+8(5)(4)=186
$$

Step 3 Find the difference of the sums.

$$
64-186=-122
$$

The determinant is -122 .

Application of Determinants

The determinant can be used to find the area of a triangle.

$$
\text { Area }=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

Always report the answer as positive.

Find the area of a triangle with vertices:
$(6,5),(4,-1),(-4,-9)$.

$$
\text { Area }=\frac{1}{2}\left|\begin{array}{ccc}
6 & 5 & 1 \\
4 & -1 & 1 \\
-4 & -9 & 1
\end{array}\right|=\frac{1}{2}(-32)=-16
$$

The area of the triangle is 16 units 2.

