Determinant of a Matrix Square matrices (2x2, 3x3, etc.) have a value called the **determinant**.

The determinant is used when finding the inverse of a matrix.

Determinants may be notated as det(A) or by using straight bars instead of brackets.

Matrix A	Determinant of A
$\begin{bmatrix} 1 & 2 \end{bmatrix}$	1 2
$\begin{bmatrix} 3 & 4 \end{bmatrix}$	3 4

Determinant of a 2x2 Matrix

The determinant is the difference of the product of the diagonals.

Main diagonal – Other diagonal

$$\begin{vmatrix} 1 & 5 \\ 4 & 8 \end{vmatrix} = (1)(8) - (4)(5) = 8 - 20 = -12$$

$$\begin{vmatrix} 1 & 5 \\ 4 & 8 \end{vmatrix} = -12$$

det $\begin{vmatrix} 2 & -3 \\ 4 & 2 \end{vmatrix}$

$\begin{vmatrix} 2 & -3 \\ 4 & 2 \end{vmatrix} = (2)(2) - (4)(-3) = 4 - (-12) = 16$

$$\det \begin{bmatrix} 2 & -3 \\ 4 & 2 \end{bmatrix} = 16$$

The determinant of matrix A is 4. What is the value of x?

$$A = \begin{bmatrix} 2 & x \\ -3 & -1 \end{bmatrix}$$

$$\begin{vmatrix} 2 & x \\ -3 & -1 \end{vmatrix} = (2)(-1) - (-3)(x) = -2 - (-3x) = 3x - 2$$

$$3x - 2 = 4$$

$$3x = 6$$

$$x = 2$$

Determinant of a 3x3 Matrix

Rewrite the first two columns to the right of the matrix.

Add the sum of the red diagonals, then subtract the sum of the blue diagonals.

Find the determinant of M.

$$M = \begin{bmatrix} 2 & 4 & 1 \\ 5 & 2 & 3 \\ 1 & 4 & 8 \end{bmatrix} \quad \det M = \begin{bmatrix} 2 & 4 & 1 \\ 5 & 2 & 3 \\ 1 & 4 & 8 \end{bmatrix}, \text{ so write } \begin{bmatrix} 2 & 4 & 1 & 2 & 4 \\ 5 & 2 & 3 & 5 & 2 \\ 1 & 4 & 8 & 1 & 4 \end{bmatrix}$$

Step 1 Multiply each "down" diagonal and add.

2(2)(8) + 4(3)(1) + 1(5)(4) = 64

Step 2 Multiply each "up" diagonal and add.

1(2)(1) + 4(3)(2) + 8(5)(4) = 186

Step 3 Find the difference of the sums.

64 - 186 = -122

The determinant is -122.

Application of Determinants

The determinant can be used to find the area of a triangle.

$$Area = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

Always report the answer as positive.

Find the area of a triangle with vertices: (6, 5), (4, -1), (-4, -9).

$$Area = \frac{1}{2} \begin{vmatrix} 6 & 5 & 1 \\ 4 & -1 & 1 \\ -4 & -9 & 1 \end{vmatrix} = \frac{1}{2} (-32) = -16$$

The area of the triangle is 16 units².