Exponential and Logarithmic Properties/Conversion

Exponential functions are written in the form: $f(x)=(\text { number })^{x}$

For example, $\mathrm{f}(\mathrm{x})=2^{\mathrm{x}}, \mathrm{g}(\mathrm{x})=10^{2 \mathrm{x}}, \mathrm{h}(\mathrm{x})=\left(\frac{1}{2}\right)^{x}$, $j(x)=5^{-x}$, etc.

The number being raised to a power is called the base.

A special base for exponentials is "e," $f(x)=e^{x}$.
The e stands for (Leonard) Euler's number.
e = 2.718....

3 ways to find the value of e:
e is: the value of $\left(1+\frac{1}{n}\right)^{n}$ as n approaches infinity.
e is: the value of $(1+n)^{1 / n}$ as n approaches zero.
e is also: $\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\cdots$

$$
\frac{1}{1}+\frac{1}{1}+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\cdots \approx 2.718
$$

The logarithm (or log) is the inverse for exponentials.

$\log _{5}(3 x-2)$
5 is the base, $(3 x-2)$ is the argument
This is said, "Log base 5 of $3 x-2$ "
$\log _{2}(x)$ is the inverse of 2^{x}
$\log _{10}(x)$ is the inverse of 10^{x}
$\log _{5}(x)$ is the inverse of 5^{x}
$\ln (x)$ is the inverse of e^{x}
$\ell n(x)$ is called the natural log. It is the log with a base of e.

A log without a written base is always base 10. $\log (x)$ implies $\log _{10}(x)$

Typing logarithms into the calculator:

Log base 10: $\log (x)$ use the \log button next to 7

Log base $\mathrm{e}: \ln (x)$ use the $\ell \mathrm{n}$ button next to 4

Any other base number: use logBASE from the MATH menu

Logarithmic \leftrightarrow exponential conversion formula:

$\log _{b} a=h \leftrightarrow a=b^{h}$
 base

The base of the log becomes the base of an exponential.

Write $\log _{2} 32=x$ as an exponential and solve for x.

$$
\log _{2} 32=x
$$

$$
2^{x}=32
$$

Write the log as an exponential
$2^{5}=32$
Solve for x .

$$
x=5
$$

Write $\log (x+8)=3$ as an exponential and solve for x.
$\log (x+8)=3$
$10^{3}=x+8$
$1000=x+8 \quad$ Solve for x.

$$
x=992
$$

Write the log as an exponential

Write each exponential as a log:
a) $5^{x}=125$

$$
\log _{5} 125=x
$$

b) $e^{5}=x$

$$
\ln x=5
$$

c) $x^{2}=25$

$$
\log _{x} 25=2
$$

d) $25^{1 / 2}=5$

$$
\log _{25} 5=1 / 2
$$

Convert to an exponential equation:

$$
w \log _{m}(x-c)+r=p
$$

$w \log _{m}(x-c)=p-r \quad$ Isolate the logarithm first.

$$
\begin{gathered}
\log _{m}(x-c)=\frac{p-r}{w} \\
m^{\frac{p-r}{w}}=x-c
\end{gathered}
$$

Convert to an exponential.

