Exponential Growth and Decay

Exponential growth occurs when values are increasing. The base will be greater than 1.

Exponential decay occurs when values are decreasing. The base will be between 0 and 1 (or greater than 1 with a negative exponent).

Example)

The population of termites in a house triples every month. If there were 20 termites to begin with, how many termites will there be at the end of one year?
$f(x)=a \cdot b^{x}$
$f(x)=20 \cdot(3)^{x}$
$f(x)=20 \cdot(3)^{12}$
$f(x)=10,628,820$ termites

Example)

The mass of a radioactive isotope is halved every year. If a sample of the isotope starts with 75 grams, how long will it take for there to only be 3 grams of the sample?
$f(x)=a \cdot b^{x}$
$3=75 \cdot\left(\frac{1}{2}\right)^{x}$
$.04=\left(\frac{1}{2}\right)^{x}$
$\log _{1 / 2}(.04)=x$
$x=4.644$ years

If growing/decaying by a percent:

Initial amount
 Number of time periods

Final amount

Rate of increase

Important: write the rate as a decimal (i.e. $10 \%=0.10$)

Clara invests $\$ 5000$ in an account that pays 6.25% interest per year. After how many years will her investment be worth $\$ 10,000$?

Step 1 Write a function to model the growth in value of her investment.
$A=a(1+r)^{t}$
$10000=5000(1+0.0625)^{t}$
$10000=5000(1.0625)^{t}$
$2=(1.0625)^{t}$
$\log _{1.0625}(2)=t$
$t \approx 11.433$

Exponential growth function.
Substitute 5000 for a, 0.0625 for r, and 10000 for A.

Simplify.
Divide by 5000
Convert to a log
Evaluate

A city population, which was initially 15,500 , has been dropping by 3% each year. What is the population of the city after 10 years?
$P(t)=a(1-r)^{t}$
$P(t)=15,500(1-0.03)^{10}$
$P(t)=15,500(0.97)^{10}$
$P(t) \approx 11430.07$
$P(t) \approx 11,430$ people

Exponential decay function.

Substitute 15,500 for a, 0.03 for r, and 10 for t.

Simplify.
Use your calculator to solve.
Round to the nearest whole number.

