Exponential Modeling/Regression

- Find an exponential model for the data. Use the model to predict when the tuition at U.T. Austin will be \$6000.
- **Step 1** Enter data into two lists in a graphing calculator. Use the exponential regression feature.

Tuition of the University of Texas		
Year	Tuition	
1999–00	\$3128	
2000–01	\$3585	
2001–02	\$3776	
2002–03	\$3950	
2003–04	\$4188	

For this problem you would have:

L1	L2
0	3128
1	3585
2	3776
3	3950
4	4188

Step 2Go back to the homescreen and then selectSTAT, CALC, 0:ExpReg

You should see:

- Xlist: L₁
- Ylist: L₂

FreqList:

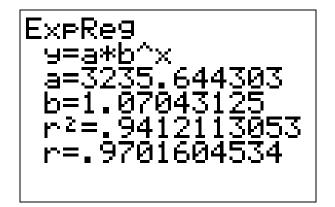
Store RegEq:

Calculate

Go to Store RegEq and select: VARS, Y-VARS, 1:Functions..., Y_1

You should see:

- Xlist: L₁
- Ylist: L₂


FreqList:

Store RegEq: Y₁

Calculate

Step 3 Select calculate

The exponential equation will be: $y = 3235.64(1.07)^{x}$

$y = 3235.64(1.07)^x$	
$6000 = 3235.64(1.07)^x$	
$1.854 = (1.07)^x$	
$\log_{1.07}(1.854) = x$	
x = 9.12	

Find when tuition = \$6000

Divide by 3235.64

Convert to a log

The tuition will be greater than \$6000 for the first time when t = 10 (round up 9.12 to the next academic year) or the 2009–2010 school year.