Exponentials and Logs as Inverses

Find the inverse of the following expressions.

1) $y=\log _{7}(x)$
2) $y=5^{x}$
3) $y=\log (x)$
4) $y=e^{x}$
5) $f(x)=4^{2 x-5}-3$
6) $g(x)=2 \ln (x+3)$
7) $h(x)=\frac{\log _{12}(3 x)}{5}$
8) Use composition to prove the functions in question 5 are inverses.
9) Use composition to prove the functions in question 6 are inverses.
10) What transformation would cause the graph of $y=3^{x}$ to have a range of $(5, \infty)$? Write the transformation in words and as an equation.
11) What transformation would cause the graph of $y=2^{x}$ to have a y-intercept of $(0,8)$? List three different ways this could happen.
12) What type of transformation could cause the graph of $y=\ln (x)$ to have a y-intercept? Give an example of a natural log function with a y-intercept.
13) What type of transformation would cause the graph of $y=\log _{9}(x)$ to have a domain of $(-10, \infty)$?
14) What type of transformation would cause the graph of an exponential to have the end behavior below?

$$
\left\{\begin{array}{l}
\text { As } \mathrm{x} \rightarrow \infty, \mathrm{f}(\mathrm{x}) \rightarrow 0 \\
\text { As } \mathrm{x} \rightarrow-\infty, \mathrm{f}(\mathrm{x}) \rightarrow \infty
\end{array}\right.
$$

15) Algebraically, how do you find the x-intercept of a logarithmic equation? Find the x-intercept of $y=\log _{3}(2 x-5)-10$.
