Exponentials and Logs as Inverses

 Because exponentials and logs are inverses:
Exponential Logarithm

Domain: $(-\infty, \infty) \longrightarrow$ Domain: $(0, \infty)$
Range: $(0, \infty) \quad$ Range: $(-\infty, \infty)$

If $y=3^{x}$ has the point $(2,9)$, then $\log _{3}(x)$ has $(9,2)$

The horizontal asymptote of $\mathrm{y}=\mathrm{b}^{\mathrm{x}}$ is the vertical asymptote of $\log _{b}(x)$

Find the inverse of $f(x)=\log _{5}(x+3)-1$ and use composition to prove they are inverses.

Find the inverse:

$$
\begin{array}{ll}
x=\log _{5}(2 y+3)-1 & \text { Switch } \mathrm{x} \text { and } \mathrm{y} \\
x+1=\log _{5}(2 y+3) & \text { Isolate log: add 1 } \\
5^{x+1}=2 y+3 & \text { Convert from to an exponential } \\
5^{x+1}-3=2 y & \text { Isolate } \mathrm{y} \text { : subtract } 3 \\
\frac{1}{2}\left(5^{x+1}\right)-1.5=y & \text { Isolate } \mathrm{y}: \text { divide by } 2 \\
f^{-1}(x)=\frac{1}{2}\left(5^{x+1}\right)-1.5 & \text { Write using function notation }
\end{array}
$$

Use composition to prove they are inverses:
$\log _{5}\left(\left(5^{x+1}-3\right)+3\right)-1 \quad$ Substitute the inverse in place of x
$\log _{5}\left(5^{x+1}\right)-1$
$(x+1) \log _{5}(5)-1$
$(x+1)(1)-1$
$x+1-1$

Simplify: cancel the -3 and +3
Log property: bring down the exponent

Log property: if the base and argument are equal, the $\log =1$

Simplify
$x \quad$ The composition simplifies to x , so the functions are inverses.

Find the inverse of $\mathrm{g}(\mathrm{x})=2(3)^{2 x}+4$ and use composition to prove they are inverses.

Find the inverse:

$$
\begin{aligned}
& x=2(3)^{2 y}+4 \\
& x-4=2(3)^{2 y} \\
& \frac{x-4}{2}=(3)^{2 y}
\end{aligned}
$$

Switch x and y
Isolate the exponential: subtract 4

Isolate the exponential: divide by 2

$$
\log _{3}\left(\frac{x-4}{2}\right)=2 y
$$

Convert from exponential to log
$g^{-1}(x)=\frac{1}{2} \log _{3}\left(\frac{x-4}{2}\right)$
Divide by 2 and write using function notation

Use composition to prove they are inverses:
$2(3)^{2\left(\frac{1}{2} \log _{3}\left(\frac{x-4}{2}\right)\right)}+4$
$2(3)^{\log _{3}\left(\frac{x-4}{2}\right)}+4$
$2\left(\frac{x-4}{2}\right)+4$
$(x-4)+4$
x

Substitute the inverse in place of x

Cancel out the $2 \times 1 / 2$
3^{x} and $\log _{3}(\mathrm{x})$ are inverses, so they cancel each other out

Cancel out the times 2 and divide by 2
Cancel out -4 and +4

The composition simplifies to x, so the functions are inverses.

