Factoring

Factoring by GCF: Pull out the largest factor that evenly divides into every term.
$5 x^{2}-10 x$
$6 y^{5}-4 y^{3}+10 y^{2}$
$5 x(x-2)$

$$
2 y^{2}\left(3 y^{3}-2 y+5\right)
$$

Difference of Squares: When you have two terms

 that are both perfect squares. There must be subtraction.$x^{2}-16$
$t^{2}-81$
$16 t^{2}-49$
$(x+4)(x-4)$
$(t+9)(t-9)$
$(4 t+7)(4 t-7)$

When you FOIL $(x+4)(x-4)$ you get: $x^{2}+4 x-4 x-16$.
The $+4 x$ and $-4 x$ cancel out. That is why one parenthesis has a positive and the other has a negative.

Factoring a trinomial with $\mathbf{a}=1$: Look for two numbers that multiply to be the last number, c, and add to be the middle number, b.
$x^{2}-7 x+12$
Two numbers that:
Multiply to equal 12, and add to equal -7 are -4 and -3.
$(x-4)(x-3)$
$w^{2}+w-6$
Two numbers that: Multiply to equal -6, and add to equal 1 are +3 and -2 .
$(w+3)(w-2)$

$$
3 x^{2}+9 x+6
$$

Factor the GCF first:

$$
3\left(x^{2}+3 x+2\right)
$$

Two numbers that:
Multiply to equal 2, and add to equal 3 are +2 and +1 .
$3(x+2)(x+1)$

Factoring with $\mathbf{a} \neq 1$

If the leading coefficient after factoring the GCF (if possible) is a $\neq 1$, then use the "bottoms up" method. "Bottoms Up" Factoring
Multiply a and c (the first and last numbers).
Re-write the equation with $1 x^{2}$ and ac in place of c.. Factor like normal.

Divide the number in each factor by the value of a in the original problem. Reduce where possible.

If a fraction remains after reducing the fraction, bring the bottom of the fraction up to become the coefficient in front of the x.

$$
\begin{gathered}
f(x)=2 x^{2}-11 x+12 \\
x^{2}-11 x+24
\end{gathered}
$$

$$
(x-3)(x-8)
$$

$$
\left(x-\frac{3}{2}\right)\left(x-\frac{8}{2}\right)
$$

$$
\left(x-\frac{3}{2}\right)(x-4)
$$

$$
(2 x-3)(x-4)
$$

What multiplies to be +24 and adds to be -11 ? -3 and -8

Divide both -3 and -8 by a (which is 2)

Reduce the fractions

Move the remaining denominator up to be the coefficient of the x

$$
f(x)=6 x^{2}+16 x+8
$$

$$
2\left(3 x^{2}+8 x+4\right)
$$

$$
2\left(x^{2}+8 x+12\right)
$$

$$
2(x+2)(x+6)
$$

$$
2\left(x+\frac{2}{3}\right)\left(x+\frac{6}{3}\right)
$$

$$
2\left(x+\frac{2}{3}\right)(x+2)
$$

$$
2(3 x+2)(x+2)
$$

Factor the GCF first.

Multiply a and c: $3 \times 4=12$

What multiplies to be +12 and adds to be +8 ? +6 and +2

Divide both +2 and +6 by a (which is 3)

Reduce the fractions

Move the remaining denominator up to be the coefficient of the x

