Finding and Proving Inverses

To find the inverse of a function, switch the x and y in the equation and solve for y.

Example) $f(x)=2 x-5$

$$
\begin{array}{ll}
y=2 x-5 & \text { Replace } f(x) \text { with } y \\
x=2 y-5 & \text { Switch } x \text { and } y \\
x+5=2 y & \text { Solve for } y \text { : add } 5 \text { to both sides } \\
\frac{x+5}{2}=y & \text { Solve for } y \text { : divide by } 2 \\
f^{-1}(x)=\frac{1}{2} x+2.5 & \text { Replace } y \text { with the inverse } f^{-1}(x)
\end{array}
$$

Example) $g(x)=4(x+1)^{3}+2$

$$
\begin{array}{ll}
y=4(x+1)^{3}+2 & \text { Replace } g(x) \text { with } y \\
x=4(y+1)^{3}+2 & \text { Switch } x \text { and } y \\
x-2=4(y+1)^{3} & \text { Solve for } y \text { : sub. } 2 \text { from both sides } \\
\frac{x-2}{4}=(y+1)^{3} & \text { Solve for } y \text { : divide by } 4 \\
\sqrt[3]{\frac{x-2}{4}}=y+1 & \text { Solve for } y \text { : take the cube root of } \\
\sqrt[3]{\frac{x-2}{4}}-1=y & \text { both sides } \\
g^{-1}(x)=\sqrt[3]{\frac{x-2}{4}}-1 & \text { Replace for } y \text { : sub. } 1 \text { from both sides } g^{-1}(x)
\end{array}
$$

Example) Find the inverse of $h(x)=\sqrt{x-25}+3$

$$
\begin{array}{cl}
\mathrm{y}=\sqrt{x-25}+3 & \text { Replace } \mathrm{h}(\mathrm{x}) \text { with } \mathrm{y} \\
\mathrm{x}=\sqrt{y-25}+3 & \text { Switch } \mathrm{x} \text { and } \mathrm{y} \\
\mathrm{x}-3=\sqrt{y-25} & \text { Solve for } \mathrm{y} \text { : sub. } 3 \text { from both sides } \\
(\mathrm{x}-3)^{2}=\mathrm{y}-25 & \text { Solve for } \mathrm{y} \text { : square both sides } \\
(\mathrm{x}-3)^{2}+25=\mathrm{y} & \text { Solve for } \mathrm{y} \text { : add } 25 \text { to each side } \\
\mathrm{h}^{-1}(\mathrm{x})=(\mathrm{x}-3)^{2}+25 & \text { Replace } \mathrm{y} \text { with the inverse } \mathrm{h}^{-1}(\mathrm{x})
\end{array}
$$

Two functions can be verified as inverses by substituting them into each other (called composition). This should always simplify to equal x.
Example) $f(x)=\frac{2}{3} x+6$ and $g(x)=\frac{3}{2} x-6$

$$
\begin{array}{ll}
\frac{2}{3}\left(\frac{3}{2} x-6\right)+6 & \text { Substitute } g(x) \text { in for } x \\
x-4+6 & \text { Simplify: Distribute } \frac{2}{3}
\end{array}
$$

$$
x+2
$$

Simplify: combine like terms

$$
\frac{3}{2}\left(\frac{2}{3} x+6\right)-6 \quad \text { Substitute } f(x) \text { in for } x
$$

$$
x+9-6
$$

Simplify: Distribute $\frac{3}{2}$

$$
x+3
$$ Simplify: combine like terms

$f(x)$ and $g(x)$ are not inverses.

Example) Are $f(x)=3 x-1$ and $g(x)=\frac{x+1}{3}$ inverses?

$$
\begin{gathered}
3\left(\frac{x+1}{3}\right)-1 \\
x+1-1 \\
x \\
\frac{(3 x-1)+1}{3} \\
\frac{3 x}{3} \\
x
\end{gathered}
$$

Substitute $g(x)$ in for x
Simplify: The 3's cancel
Simplify: combine like terms
Substitute $f(x)$ in for x
Simplify: Cancel -1 and +1
Simplify: Divide 3/3
$f(x)$ and $g(x)$ are inverses.

