Function Composition

When you substitute one function into another, that is called **composition**.

Example: f(g(x))

To evaluate, substitute the inner function into the variables of the outer function.

Given $f(x) = 4x^2 + 2$ and $g(x) = \sqrt{2x}$

Evaluate: g(f(x))

$$g(x) = \sqrt{2x}$$
$$g(f(x)) = \sqrt{2(4x^2 - 2)}$$
$$g(f(x)) = \sqrt{8x^2 - 4}$$
Evaluate: f(g(x))

$$f(x) = 4x^{2} + 2$$

$$f(g(x)) = 4(\sqrt{2x})^{2} + 2$$

$$f(g(x)) = 4(2x) + 2$$

$$f(g(x)) = 8x + 2$$

Sub. $(4x^2 - 2)$ in for x.

Simplify.

Sub.
$$(\sqrt{2x})$$
 in for x.
Simplify.

Given $f(x) = x^2$. Write the equation for the following transformations.

$$y = f(4x)$$
 $y = -2f(x - 1)$

y = $(4x)^2$ Sub. 4x into f(x) y = $(x - 1)^2$ Sub. x-1 into f(x) y = $(4x)^2$ y = $(4x)^2$ Mult. By -2

y = f(2x) + 5y = 6f(x) + 3 $y = (2x)^2$ Sub. 2x into f(x) $y = 6x^2$ Mult. f(x) by 6 $y = (2x)^2 + 5$ Add 5 $y = 6x^2 + 3$ Add 3