Function Notation

Functions are given different names so that communication about math is made easier.

We use letters to distinguish between different functions.
$f(x), g(x), h(x), a(x)$, etc.
$f(x)$ is read: " f of x "
This literally means: the function named f has x as its independent variable.
x is the independent variable.
$f(x)$ which replaces $y=$ is the dependent variable.

If you see a number instead of a variable (i.e. f(2) instead of $f(x)$), then you are supposed to evaluate the function for that value. Substitute and simplify.

Given: $\mathrm{g}(\mathrm{x})=5 \mathrm{x}-10$. Evaluate $\mathrm{g}(3)$.

$$
\begin{aligned}
& g(3)=5(3)-10 \\
& g(3)=15-10 \\
& g(3)=5
\end{aligned}
$$

Given: $f(t)=2 t^{2}+1, h(x)=5-4 x$, and $A(x)=5 x$.

Evaluate: $h(6), A(0)$, and $f(-3)$.

$$
\begin{array}{ll}
h(6)=5-4(6) & A(0)=5(0) \\
h(6)=5-24 & A(0)=0 \\
h(6)=-19 &
\end{array}
$$

$$
\begin{aligned}
& f(-3)=2(-3)^{2}+1 \\
& f(-3)=2(9)+1 \\
& f(-3)=19
\end{aligned}
$$

Use the graph to evaluate:
$f(-3)=1$
$g(-3)=-1$
$f(4)=0$
$g(-1)=3$

$g(x)=-1 \quad$ When $x=-3$ and $x=1$

