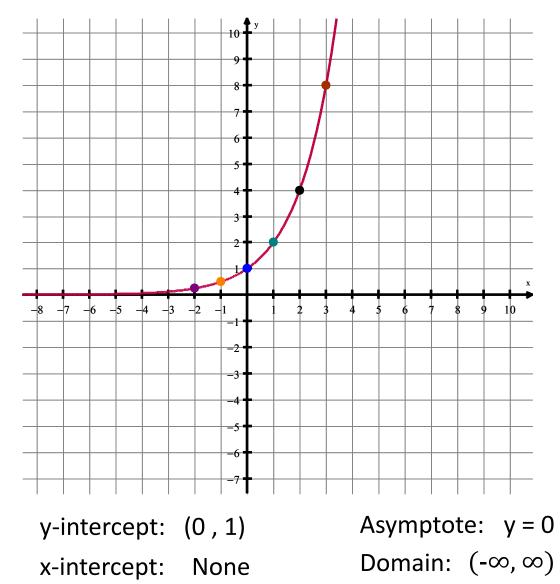
Graphing Exponentials and Logs

All exponentials (regardless of base)


if there are no transformations will have:

- Domain: $(-\infty, \infty)$
- Range: (0, ∞)
- y-intercept: (0, 1) because (number)⁰ = 1
- x-intercept: None
- Horizontal asymptote: y = 0
- End behavior: As $x \to \infty$, $f(x) \to \infty$

As $x \to -\infty$, $f(x) \to 0$

Graph $f(x) = 2^x$ and identify its properties.

Range: $(0, \infty)$

f(x)
2 ⁻² = ¼
2 ⁻¹ = ½
2 ⁰ = 1
2 ¹ = 2
2 ² = 4
2 ³ = 8
2 ⁴ = 16

End behavior:

As $x \to \infty$, $f(x) \to \infty$, As $x \to -\infty$, $f(x) \to 0$

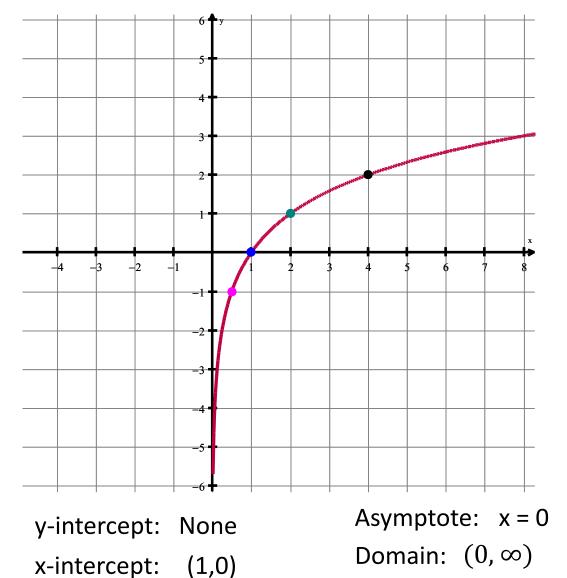
Transformations of exponentials

Add/subtract in exponent: horizontal shift

- $g(x) = b^{x} + 1$ Vertical shift up 1
- $h(x) = b^{x+2}$
- $j(x) = b^{x-3}$
- $k(x) = 2b^x$
- $m(x) = -\frac{1}{3}b^x$

- Horizontal shift left 2
- Horizontal shift right 3
- Vertical stretch by 2
- Vertical reflection, vertical compression by 1/3.

All logarithms (regardless of base)


if there are no transformations will have:

- Domain: (0, ∞)
- Range: $(-\infty, \infty)$
- y-intercept: None
- x-intercept: (1, 0) because $\log_{b}(1) = 0$.
- Vertical asymptote: x = 0
- End behavior: As $x \to \infty$, $f(x) \to \infty$

As $x \to 0^+$, $f(x) \to -\infty$

Graph $f(x) = \log_2 x$ and identify its properties.

Range: $(-\infty, \infty)$

Х	f(x)
-1	DNE
0	DNE
1	0
2	1
4	2
8	3

End behavior:

As $x \to 0^+$, $f(x) \to -\infty$, As $x \to \infty$, $f(x) \to \infty$

Transformations of logs

Add/subtract in argument: horizontal shift

- $g(x) = \log_{b}(x) + 1$ Vertical shift up 1
- $h(x) = \log_{b}(x + 2)$ Horizontal shift left 2
- $j(x) = \log_{b}(x 3)$
- Horizontal shift right 3
- $k(x) = 2\log_{b}(x)$

- Vertical stretch by 2
- $m(x) = -\frac{1}{3}\log_{b}(x)$
- Vertical reflection, vertical compression by 1/3.

How does the transformation $log_b(x + 3)$ affect the vertical asymptote of the graph?

- The original graph has a vertical asymptote at x = 0.
- The transformation above is a horizontal shift left 3.
- The vertical asymptote of logb(x + 3) is also shifted left 3, so the VA is at x = -3.
 - How does the transformation b^{x-2} affect the asymptote of the graph?
- Exponential graphs have horizontal asymptotes.
- Shifting the graph right 2 will not affect the asymptote.
- A vertical shift would cause the asymptote to change.