Graphing Polynomials

Graph $f(x)=\frac{1}{3} x^{4}-2 x^{3}+2 x^{2}+4$ and identify its attributes.

Zeros: $(2.232,0)$ and $(4.556,0)$
Increasing: $\quad(0, .814) \cup(3.686, \infty)$
Decreasing: $\quad(-\infty, 0) \cup(.814,3.686)$
Relative maximum(s): (.814, 4.393)

Relative minimum(s): (3.686, -7.455)
End Behavior: As $x \rightarrow \infty, f(x) \rightarrow \infty$ As $x \rightarrow-\infty, f(x) \rightarrow \infty$

Domain: $(-\infty, \infty)$
Range: $(-7.455, \infty)$

To find zeros:

Set $y_{2}=0$ and find the intersection(s) on the graph using $2^{\text {nd }} \rightarrow$ trace $\rightarrow 5$: Intersection.

To find the relative minimums: $2^{\text {nd }} \rightarrow$ trace $\rightarrow 3$: Minimum. Move the cursor to the left of the minimum and hit enter. Move it to the right and hit enter twice.

To find the relative maximums: $2^{\text {nd }} \rightarrow$ trace $\rightarrow 4$: Maximum. Move the cursor to the left and right of the maximum.

