Graphing Rational Functions

 Rational functions have variables in the denominator of a fraction (i.e. $\frac{3}{x+2}, \frac{x^{2}+5 x+3}{2 x+1}, \frac{1}{x}$)An asymptote is a line that a graph approaches.

Vertical asymptote at $x=-3$ Horizontal asymptote at $\mathrm{y}=1$

Vertical asymptotes occur where the denominator

 is equal to zero.Find the vertical asymptotes and domain of:

$$
\begin{aligned}
& g(x)=\frac{x-2}{x^{2}-1} \\
& g(x)=\frac{x-2}{(x+1)(x-1)}
\end{aligned}
$$

Factor the denominator
The denominator equals zero when $x=-1$ and $x=1$.
There are vertical asymptotes at $\mathrm{x}=-1$ and $\mathrm{x}=1$.

The domain is: $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$

Find the vertical asymptotes and domain for:
$f(x)=\frac{3}{5 x-2}$

The denominator equals zero when $x=2 / 5$.
There is a vertical asymptote at $\mathrm{x}=2 / 5$.
The domain is: $(-\infty, 2 / 5) \cup(2 / 5, \infty)$

A hole in a function is a specific x-value where the function does not exist.

Holes are found when you cancel out a factor from the numerator and denominator of the function.

$$
h(x)=\frac{(x+1)(x+2)}{x(x+2)}
$$

Hole at $\mathrm{x}=-2$

Holes affect the domain (and sometimes range).

Use an open circle to graph a hole.

Determine the holes, vertical asymptotes, and domain for $\mathrm{h}(\mathrm{x})=\frac{x^{2}-7 x+6}{x^{2}-36}$

$$
\begin{aligned}
& h(x)=\frac{(x-6)(x-1)}{(x+6)(x-6)} \\
& h(x)=\frac{(x-6)(x-1)}{(x+6)(x-6)} \\
& h(x)=\frac{(x-1)}{(x+6)}
\end{aligned}
$$

$\mathrm{f}(\mathrm{x})$ has a hole at $\mathrm{x}=6$ and a vertical asymptote at $x=-6$

Domain: $(-\infty,-6) \cup(-6,6) \cup(6, \infty)$

Factor the numerator and denominator

Cancel common factors

Plug in the x-value of a hole into the simplified equation to find its coordinate.

For the last example, the hole is located at $x=6$.
$h(x)=\frac{(x-1)}{(x+6)} \quad h(6)=\frac{(6-1)}{(6+6)}=\frac{5}{12}$

The hole has coordinate ($6,5 / 12$)

For horizontal asymptotes (HA):

1. If the numerator has a higher degree, there is no HA.
2. If the denominator has a higher degree, the HA is $\mathrm{y}=0$.
3. If both degrees are the same, the HA is the ratio (fraction) of the leading coefficients.

Determine the horizontal asymptote for:

$$
g(x)=\frac{3 x^{2}-4 x+1}{9 x^{2}+19}
$$

$$
h(x)=\frac{5 x^{5}-32 x^{2}}{12 x^{4}-3 x}
$$

The degree of the numerator and denominator are the same.

There is a horizontal asymptote at $\frac{3}{9}=\frac{1}{3}, y=\frac{1}{3}$

The degree of the numerator is greater than the denominator.

The function has no horizontal asymptote.

Determine the horizontal asymptote for:

$$
g(x)=\frac{x^{2}+2 x+2}{2 x^{3}+5}
$$

The degree of the denominator is greater than the numerator.

There is a horizontal asymptote at $\mathrm{y}=0$.

