Inverse of a Matrix

An identity matrix is a square matrix with 1's on the diagonal and 0's everywhere else.

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

When you multiply a matrix with its inverse (A^{-1}), you will get the identity matrix.

$$
\begin{aligned}
& A \times A^{-1}=I \\
& A^{-1} \times A=I
\end{aligned}
$$

Are the following matrices inverses?

$$
\begin{gathered}
{\left[\begin{array}{cc}
2 & -1 \\
2 & 0
\end{array}\right] \text { and }\left[\begin{array}{cc}
-1 & 0.5 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{cc}
2 & -1 \\
2 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & 0.5 \\
0 & 1
\end{array}\right] \quad \text { Multiply the matrices together. }} \\
{\left[\begin{array}{ll}
-2 & 0 \\
-2 & 1
\end{array}\right] \quad \begin{array}{l}
\text { This is not the identity matrix } \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text {, so they are not inverses. }}
\end{array}}
\end{gathered}
$$

A matrix will have an inverse if:

1) It is a square matrix AND
2) Its determinant is not zero.

A matrix with a determinant of zero is called singular; it has no inverse.

Inverse of a 2x2 Matrix

The inverse of $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is: $\quad A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.

Find the inverse of the matrix if it is defined.

$$
A=\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right]
$$

$\operatorname{det}(A)=(4)(1)-(3)(2)$ $\operatorname{det}(\mathrm{A})=-2$

$$
A^{-1}=-\frac{1}{2}\left[\begin{array}{cc}
1 & -3 \\
-2 & 4
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{3}{2} \\
1 & -2
\end{array}\right] .
$$

Find the inverse of $\left[\begin{array}{cc}3 & 2 \\ 3 & -2\end{array}\right]$, if it is defined.

$$
\begin{array}{ll}
\operatorname{det}(\mathrm{M})=(3)(-2)-(3)(2) & M^{-1} \\
\operatorname{det}(\mathrm{M})=-12 & =\frac{1}{-12}\left[\begin{array}{cc}
-2 & -2 \\
-3 & 3
\end{array}\right] \\
M^{-1} & =\left[\begin{array}{cc}
\frac{-2}{-12} & \frac{-2}{-12} \\
\frac{-3}{-12} & \frac{3}{-12}
\end{array}\right] \\
M^{-1} & =\left[\begin{array}{cc}
1 / 6 & 1 / 6 \\
1 / 4 & -1 / 4
\end{array}\right]
\end{array}
$$

To solve systems of equations with the inverse, you first write the matrix equation.

The matrix equation representing $\left\{\begin{array}{l}x+y=8 \\ 2 x+y=1\end{array}\right.$ is shown.

To solve $A X=B$, multiply both sides by the inverse A^{-1}.

$$
\begin{aligned}
A^{-1} A X & =A^{-1} B \\
I X & =A^{-1} B \quad \text { The product of } A^{-1} \text { and } A \text { is } I . \\
X & =A^{-1} B
\end{aligned}
$$

$$
\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right] \times\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
8 \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]^{-1} \times\left[\begin{array}{l}
8 \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-7 \\
15
\end{array}\right]
$$

$$
x=-7, y=15
$$

Write the matrix equation for the system and solve.

$$
\begin{gathered}
\left\{\begin{array}{l}
2 x+5 y=0 \\
5 x-3 y=31
\end{array}\right. \\
\left.\begin{array}{c}
A \\
{\left[\begin{array}{c}
2 \\
5
\end{array}\right.} \\
5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
B \\
0 \\
31
\end{array}\right] \quad \text { Set up the matrix equation. } \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
2 & 5 \\
5 & -3
\end{array}\right]^{-1} \times\left[\begin{array}{c}
0 \\
31
\end{array}\right] \quad \text { Multiply by the inverse of } A .} \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2
\end{array}\right] \quad x=5 \quad \text { and } y=-2}
\end{gathered}
$$

Encoding a message

Matrices can be used to send encrypted messages.

You will have an encrypting matrix (E), a message matrix (M) and the coded (encrypted) matrix (C).

Multiply the encrypting matrix by the message matrix to create the coded matrix.
$\mathrm{EM}=\mathrm{C}$
$\left[\begin{array}{cc}1 & -2 \\ 3 & -2\end{array}\right] \cdot\left[\begin{array}{cccccc}2 & 5 & 12 & 20 & 15 & 14 \\ 20 & 9 & 7 & 5 & 18 & 19\end{array}\right]=\left[\begin{array}{cccccc}-38 & -13 & -2 & 10 & -21 & -24 \\ -34 & -3 & 22 & 50 & 9 & 4\end{array}\right]$
Make up the
encrypting matrix

Multiply by the inverse of E to decode the encrypted message.

$$
\begin{aligned}
& \mathrm{E}^{-1} \mathrm{EM} \\
& \mathrm{M}=\mathrm{E}^{-1} \mathrm{C} \\
& \mathrm{M}=\mathrm{E}^{-1} \mathrm{C} \\
& {\left[\begin{array}{ll}
1 & -2 \\
3 & -2
\end{array}\right]^{-1} \cdot\left[\begin{array}{cccccc}
-38 & -13 & -2 & 10 & -21 & -24 \\
-34 & -3 & 22 & 50 & 9 & 4
\end{array}\right]=\left[\begin{array}{cccccc}
2 & 5 & 12 & 20 & 15 & 14 \\
20 & 9 & 7 & 5 & 18 & 19
\end{array}\right] }
\end{aligned}
$$

