Inverse Relations

On a calculator, graph $y_1 = x^2$ and $y_2 = \sqrt{x}$. Fill in the following tables.

What do you notice about the tables?

The **inverse** of a function is the reverse of the original function.

Inverses involve opposite operations.

The inverse of a function is written with a "-1."

<u>Function</u>	<u>Inverse</u>
f(x)	f -1(x)
g(x)	g ⁻¹ (x)

This means the x and y values are reversed for the inverse function.

Example) Fill in the table for h⁻¹(x)

х	h(x)
1	-1
3	0
4	4
7	5
9	10
10	12

x	h -1(x)
-1	1
0	3
4	4
5	7
10	9
12	10

Because the x and y values are switched, so are the domains and ranges.

Domain of $f(x) = Range of f^{-1}(x)$ Range of $f(x) = Domain of f^{-1}(x)$ f(x)=ln(x)f(x) Domain: $(0, \infty)$ Range: $(-\infty, \infty)$ $f^{-1}(x)$ Domain: $(-\infty, \infty)$ Range: $(0, \infty)$

If a graph fails the <u>horizontal line test</u>, then you have to <u>restrict the domain</u> to make its inverse be a function.

If you restrict the domain to $[0, \infty)$, then the inverse is a function.

