Linear and Quadratic Systems

Solve $\left\{\begin{array}{c}y=x^{2}+4 x+3 \\ y-2 x=6\end{array}\right.$

Step 1: Simplify and solve both equations for y.

$$
\begin{array}{ll}
y=x^{2}+4 x+3 & y-2 x=6 \\
y=2 x+6
\end{array}
$$

Step 2: Substitute one equation into the y value of the other. (Essentially, just set them equal to each other.) Solve for x.
$x^{2}+4 x+3=2 x+6$
$x^{2}+2 x-3=0$
$(x+3)(x-1)=0$
$x=-3 \quad x=1$

Get the equation equal to zero.
Factor.
Find the zeros.

Solve $\left\{\begin{array}{l}y+1=\frac{1}{2}(x-3)^{2} \\ x-y=6\end{array}\right.$
Step 1: Solve both equations for y .
$y+1=1 / 2\left(x^{2}-6 x+9\right) \quad-y=6-x$
$y+1=1 / 2 x^{2}-3 x+4.5$
$y=x-6$
$y=1 / 2 x^{2}-3 x+3.5$

Step 2: Set the two equations equal to each other.

$$
\begin{aligned}
& 1 / 2 x^{2}-3 x+3.5=x-6 \\
& x^{2}-6 x+7=2 x-12 \\
& x^{2}-8 x+19=0
\end{aligned}
$$

Step 2 continued: This equation does not factor, so use the quadratic formula to find the x-values.

$$
\begin{gathered}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{8 \pm \sqrt{8^{2}-4(1)(19)}}{2(1)} \\
x=\frac{8 \pm \sqrt{-12}}{2}
\end{gathered}
$$

No real solutions.

There is no solution to this system of equations.

A punter kicks a football. The height of the football is given by $h=-4.9 t^{2}+18.24 t+0.8$, where t is the time after the ball is kicked. The height of an approaching defender's hands is $\mathrm{h}=-1.43 \mathrm{t}+4.26$. Does the blocker knock down the punt?

$$
-4.9 t^{2}+18.24 t+0.8=-1.43 t+4.26
$$

$-4.9 t^{2}+19.67 t-3.46=0$
Set the equations equal to each other.

Get the equation equal to zero.

$$
t=\frac{-19.67 \pm \sqrt{19.67^{2}-4(-4.9)(-3.46)}}{2(-4.9)}
$$

Use the quadratic formula.
$t=\frac{-19.67+\sqrt{319.0929}}{-9.8}$ and $t=\frac{-19.67-\sqrt{319.0929}}{-9.8}$
$t=0.184$ and $t=3.830$

