Dividing Polynomials: Long Division

 Warm-Up: Use long division to evaluate each quotient by hand (no calculator allowed)$6 \longdiv { 2 1 4 }$

$214 \div 6=35 \frac{4}{6}$
$1 2 \longdiv { 2 7 7 }$

$277 \div 12=23 \frac{1}{12}$

Divide using long division. $\left(-y^{2}+2 y^{3}-45\right) \div(y-3)$
Step 1 Write the dividend in standard form, including terms with a coefficient of 0 .

$$
2 y^{3}-y^{2}+0 y-45
$$

Step 2 Write division in the same way you would when dividing numbers.

$$
y - 3 \longdiv { 2 y ^ { 3 } - y ^ { 2 } + 0 y - 4 5 }
$$

Step 3 Divide.

$$
\begin{gathered}
\frac{2 y^{2}}{y-3} \begin{array}{c}
2 y^{3}-y^{2}+0 y-45 \\
\frac{-\left(2 y^{3}-6 y^{2}\right)}{5 y^{2}}
\end{array} .
\end{gathered}
$$

What multiplies with y to equal $2 y^{3}$? $2 y^{2}$. Write $2 y^{2}$ above the division line.

Multiply $y-3$ by $2 y^{2}$. Then subtract those values divided polynomial.

Step 3 Divide.

$$
\begin{gathered}
2 y^{2}+5 y \\
y - 3 \longdiv { 2 y ^ { 3 } - y ^ { 2 } + 0 y - 4 5 } \\
\frac{-\left(2 y^{3}-6 y^{2}\right)}{5 y^{2}+0 y} \\
-\left(5 y^{2}-15 y\right) \\
15 y
\end{gathered}
$$

Bring down the next term (0y). What multiplies by y to equal $5 y^{2}$? $5 y$
Multiply $y-3$ by 5y. Then subtract.

Step 3 Divide.

$$
\begin{aligned}
& \frac{2 y^{2}+5 y+15}{y-3} \begin{aligned}
2 y^{3}-y^{2}+0 y-45 \\
-\left(2 y^{3}-6 y^{2}\right)
\end{aligned} \\
& \begin{array}{l}
5 y^{2}+0 y \\
-\left(5 y^{2}-15 y\right) \\
15 y-45
\end{array} \begin{array}{l}
\text { Bring down the next term (45). } \\
\text { What multiplies with y to equal } \\
\text { 15y? 15 } \\
\text { Multiply } y-3 \text { by 15. Then } \\
\text { subtract. }
\end{array} \\
& \text { The remainder is } 0 .
\end{aligned}
$$

$2 y^{2}+5 y+15 \quad$ The answer is what is above the division symbol.
You can check your answer by multiplying $(y-3)\left(2 y^{2}+5 y+15\right)$

Divide using long division.

 $\left(15 x^{2}+8 x-12\right) \div(3 x+1)$Step 1 Write the dividend in standard form, including terms with a coefficient of 0 .

$$
15 x^{2}+8 x-12
$$

Step 2 Write division in the same way you would when dividing numbers.

$$
3 x + 1 \longdiv { 1 5 x ^ { 2 } + 8 x - 1 2 }
$$

$\frac{5 x+1}{3 x + 1 \longdiv { 1 5 x ^ { 2 } + 8 x - 1 2 }}$
$-\left(15 x^{2}+5 x\right)$ $3 x-12$
$-(3 x+1)$
-13

Notice that $3 x$ times $5 x$ is $15 x^{2}$. Write $5 x$ above $15 x^{2}$.
Multiply $3 x+1$ by $5 x$. Then subtract. Bring down the next term. Divide 3x by 3x.
Multiply $3 x+1$ by 1 . Then subtract.
Find the remainder. It goes over the divisor.

$$
5 x+1-\frac{13}{3 x+1}
$$

Divide using long division. $\left(4 x^{3}-2 x^{2}-3\right) \div\left(2 x^{2}-1\right)$
Step 1 Write the dividend in standard form, including terms with a coefficient of 0 .

$$
4 x^{3}-2 x^{2}+0 x-3
$$

Step 2 Write division in the same way you would when dividing numbers.

$$
2 x ^ { 2 } - 1 \longdiv { 4 x ^ { 3 } - 2 x ^ { 2 } + 0 x - 3 }
$$

$$
\begin{array}{r}
2 x ^ { 2 } - 1 \longdiv { 2 x - 1 } \\
\frac{-\left(4 x^{3}+2 x^{2}+0 x-3\right.}{\left.2 x^{2}-2 x\right)} \\
\frac{-\left(-2 x^{2}+2 x-3\right.}{2 x-0 x+1)}
\end{array}
$$

Notice that $3 x$ times $5 x$ is $15 x^{2}$. Write $5 x$ above $15 x^{2}$.
Multiply $3 x+1$ by $5 x$. Then subtract. Bring down the next term. Divide 3x by 3x.

$$
-\left(-2 x^{2}+0 x+1\right) \quad \text { Multiply } 3 x+1 \text { by } 1 . \text { Then }
$$

subtract.
Find the remainder.

$$
2 x-1-\frac{2 x-4}{2 x^{2}-1}
$$

You are finished with long division once what you are dividing into has a lower power than what you are dividing by.

The last problem was finished once we divided down to $(2 x-4)$ because $2 x$ has a lower degree than the divisor: $2 x^{2}-1$.

Evaluate $\left(x^{4}+3 x^{3}+5 x-1\right) \div\left(x^{2}-2\right)$

$$
x^{2}+0 x-2 \frac{x^{2}+3 x+2}{x^{4}+3 x^{3}+0 x^{2}+5 x-1}
$$

$$
\frac{-\left(x^{4}+0 x^{3}-2 x^{2}\right)}{3 x^{3}+2 x^{2}+5 x}
$$

$$
-\left(3 x^{3}+0 x^{2}-6 x\right)
$$

$$
2 x^{2}+11 x-1
$$

$$
-\left(2 x^{2}+0 x-4\right)
$$

$$
11 x+3
$$

$$
x^{2}+3 x+2+\frac{11 x+3}{x^{2}-2}
$$

