Matrix Basics

A matrix (plural: matrices) is used to organize data or systems of equations.

Matrices have rows (horizontal) and columns (vertical).

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \leftarrow \text { Row } 1 \\
& \text { Column } 1
\end{aligned}
$$

The dimensions of a matrix come from the number of rows and columns. Always rows $1^{\text {st }}$ and columns $2^{\text {nd }}$.

Matrix A is a 2×3 (2 rows by 3 columns) matrix.

What are the dimensions of matrix B and matrix C ?
$B=\left[\begin{array}{ll}1 & 5 \\ 3 & 2 \\ 0 & 1 \\ 8 & 1\end{array}\right] \quad \mathrm{C}=\left[\begin{array}{ccc}1 & 1 & 3 \\ 3 & 5 & -2\end{array}\right]$
B is 4×2 and C is 2×3
$B_{4 \times 2}$
$\mathrm{C}_{2 \times 3}$

The dimensions are written as subscripts.

The address (location) of an entry is based on the row and column.

$$
C=\underset{\substack{C_{11} \\
C_{21} \\
\text { 2nd }^{\text {nd }} \text { row, } 1^{\text {st }} \text { column }}}{\left[\begin{array}{ll}
C_{22} & C_{23}
\end{array}\right]}
$$

Matrices are named with capital letters. Addresses are named with lowercase letters.

Two matrices can be added/subtracted if they have the exact same dimensions.

Add or subtract, if possible.

$$
W=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right], \quad Y=\left[\begin{array}{ll}
1 & 4 \\
-2 & 3
\end{array}\right]
$$

$\mathbf{W}+\mathbf{Y}$
Add each corresponding entry.

$$
W+Y=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right]+\left[\begin{array}{ll}
1 & 4 \\
-2 & 3
\end{array}\right]=\left[\begin{array}{ll}
3+1 & -2+4 \\
1+(-2) & 0+3
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
-1 & 3
\end{array}\right]
$$

Add or subtract, if possible.

$$
X=\left[\begin{array}{ccc}
4 & 7 & c \\
a & 1 & -1
\end{array}\right] \quad Z=\left[\begin{array}{ccc}
b & -2 & 3 \\
1 & 0 & 4
\end{array}\right]
$$

$\mathbf{X} \mathbf{- Z}$
Subtract each corresponding entry.

$$
X-Z=\left[\begin{array}{ccc}
4 & 7 & c \\
a & 1 & -1
\end{array}\right]-\left[\begin{array}{ccc}
b & -2 & 3 \\
1 & 0 & 4
\end{array}\right]=\left[\begin{array}{ccc}
4-b & 9 & c-3 \\
a-1 & 1 & -5
\end{array}\right]
$$

Add or subtract if possible.

$$
A=\left[\begin{array}{lc}
4 & -2 \\
-3 & 10 \\
2 & 6
\end{array}\right] \quad B=\left[\begin{array}{lll}
4 & -1 & -5 \\
3 & 2 & 8
\end{array}\right]
$$

B - A

B is a 2×3 matrix, and A is a 3×2 matrix. Because B and A do not have the same dimensions, they cannot be subtracted.

Matrices can be multiplied by a constant number called a scalar. Multiply all entries by the scalar.

$$
A=\left[\begin{array}{lc}
4 & -2 \\
-3 & 10
\end{array}\right]
$$

Determine the value of $-3 A$.
$-3\left[\begin{array}{cc}4 & -2 \\ -3 & 10\end{array}\right] \longrightarrow\left[\begin{array}{lc}4(-3) & -2(-3) \\ -3(-3) & 10(-3)\end{array}\right] \longrightarrow-3 A=\left[\begin{array}{cc}-12 & 6 \\ 9 & -30\end{array}\right]$

Given: $A=\left[\begin{array}{cc}3 & x+4 \\ y & -2\end{array}\right]$ and $B=\left[\begin{array}{cc}9 & -2 x \\ 3 & 0\end{array}\right]$, determine $2 A-3 B$.

$$
\begin{array}{ll}
2\left[\begin{array}{cc}
3 & x+4 \\
y & -2
\end{array}\right]-3\left[\begin{array}{cc}
9 & -2 x \\
3 & 0
\end{array}\right] & \text { Write out the problem. } \\
{\left[\begin{array}{cc}
6 & 2 x+8 \\
2 y & -4
\end{array}\right]+\left[\begin{array}{cc}
-27 & 6 x \\
-9 & 0
\end{array}\right]} & \text { Multiply by each scalar. }
\end{array}
$$

$$
\left[\begin{array}{cc}
-21 & 8 x+8 \\
2 y-9 & -4
\end{array}\right]
$$

Combine corresponding entries.

Two matrices are equal if and only if they have the same dimensions and equal entries.

$$
A=\left[\begin{array}{cc}
4 & 0 \\
6 & -2 \\
3 & 1
\end{array}\right] \quad B=\left[\begin{array}{cc}
x & 0 \\
6 & y+4 \\
z-x & 1
\end{array}\right]
$$

If $A=B$, determine the value of each variable.

$$
\begin{aligned}
& \quad\left[\begin{array}{cc}
4 & 0 \\
6 & -2 \\
3 & 1
\end{array}\right]=\left[\begin{array}{cc}
x & 0 \\
6 & y+4 \\
z-x & 1
\end{array}\right] \\
& \mathrm{x}=4 \\
& \mathrm{y}+4=-2 \rightarrow \mathrm{y}=-6 \\
& \mathrm{z}-\mathrm{x}=3 \quad \rightarrow \mathrm{z}=\mathrm{x}+3 \quad \rightarrow \mathrm{z}=7
\end{aligned}
$$

