Multiplying Matrices

Two matrices can be multiplied if:
Matrix 1's columns = Matrix 2's rows
Given $A_{4 \times 2}$ and $B_{2 \times 5}$

$$
A \quad B
$$

AB is possible because: $4 \times 2 \quad 2 \times 5$
The resulting matrix is 4×5 (the outside numbers).

$$
B \quad A
$$

BA is not possible because: $2 \times 54 \times 2$
The inside numbers do not match.

To multiply matrices:
Multiply each entry from a row of the $1^{\text {st }}$ matrix with each entry from a column of the $2^{\text {nd }}$.

$1^{\text {st }}$ row times $1^{\text {st }}$ column gives address $\mathrm{a}_{11}: 1(7)+2(10)=27$
$2^{\text {nd }}$ row times $3^{\text {rd }}$ column gives address $a_{23}: 3(9)+4(12)=75$

$$
\left[\begin{array}{ccc}
27 & \cdot & \cdot \\
\cdot & \cdot & 75 \\
. & . & .
\end{array}\right]
$$

Find the product, if possible. WX

$$
W=\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right] \quad X=\left[\begin{array}{lll}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]
$$

Check the dimensions. W is $3 \times 2, X$ is 2×3. $W X$ is defined and is 3×3.

$$
W=\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right] \quad X=\left[\begin{array}{lll}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]
$$

Multiply row 1 of W and column 1 of X as shown. Place the result in $w x_{11}$.

$$
\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{lll}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]=\left[\begin{array}{lll}
2 & ? & ? \\
? & ? & ? \\
? & ? & ?
\end{array}\right] \quad 3(4)+-2(5)
$$

$$
W=\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right] \quad X=\left[\begin{array}{lll}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]
$$

Multiply row 1 of W and column 2 of X as shown. Place the result in $w X_{12}$.

$$
\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{ccc}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 19 & ? \\
? & ? & ? \\
? & ? & ?
\end{array}\right] 3(7)+-2(1)
$$

$$
W=\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right] \quad X=\left[\begin{array}{lll}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]
$$

Multiply row 1 of W and column 3 of X as shown. Place the result in $w X_{13}$.

$$
\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{ccc}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 19 & -4 \\
? & ? & ? \\
? & ? & ?
\end{array}\right] \quad 3(-2)+-2(-1)
$$

$$
W=\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right] \quad X=\left[\begin{array}{lll}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]
$$

Multiply row 2 of W and column 1 of X as shown. Place the result in $w x_{21}$.

$$
\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{ccc}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 19 & -4 \\
4 & ? & ? \\
? & ? & ?
\end{array}\right] \quad 1(4)+0(5)
$$

$$
W=\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right] \quad X=\left[\begin{array}{lll}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]
$$

Multiply row 2 of W and column 2 of X as shown. Place the result in $w x_{22}$.

$$
\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{lll}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 19 & -4 \\
4 & 7 & ? \\
? & ? & ?
\end{array}\right] \quad 1(7)+0(1)
$$

$$
W=\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right] \quad X=\left[\begin{array}{lll}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]
$$

Multiply row 2 of W and column 3 of X as shown. Place the result in $w x_{23}$.

$$
\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{ccc}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 19 & -4 \\
4 & 7 & -2 \\
? & ? & ?
\end{array}\right] \quad 1(-2)+0(-1)
$$

$$
W=\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right] \quad X=\left[\begin{array}{lll}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]
$$

Multiply row 3 of W and column 1 of X as shown. Place the result in $w x_{31}$.

$$
\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{ccc}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 19 & -4 \\
4 & 7 & -2 \\
3 & ? & ?
\end{array}\right] 2(4)+-1(5)
$$

$$
W=\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right] \quad X=\left[\begin{array}{lll}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]
$$

Multiply row 3 of W and column 2 of X as shown. Place the result in $w x_{32}$.

$$
\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{ccc}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 19 & -4 \\
4 & 7 & -2 \\
3 & 13 & ?
\end{array}\right] \quad 2(7)+-1(1)
$$

$$
W=\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right] \quad X=\left[\begin{array}{lll}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]
$$

Multiply row 3 of W and column 3 of X as shown. Place the result in $w x_{33}$.

$$
\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{lll}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 19 & -4 \\
4 & 7 & -2 \\
3 & 13 & -3
\end{array}\right] \quad 2(-2)+-1(-1)
$$

Find each product, if possible. XW

$$
W=\left[\begin{array}{cc}
3 & -2 \\
1 & 0 \\
2 & -1
\end{array}\right] \quad X=\left[\begin{array}{lll}
4 & 7 & -2 \\
5 & 1 & -1
\end{array}\right]
$$

Check the dimensions. X is 2×3, and W is 3×2 so the product is defined and is 2×2.
$X W=\left[\begin{array}{cc}4(3)+7(1)-2(2) & 4(-2)+7(0)-2(-1) \\ 5(3)+1(1)-1(2) & 5(-2)+1(0)-1(-1)\end{array}\right]=\left[\begin{array}{ll}15 & -6 \\ 14 & -9\end{array}\right]$

Find the product, if possible.
CA

$$
A=\left[\begin{array}{ccc}
0 & 4 & 9 \\
-3 & 3 & 2
\end{array}\right] \quad C=\left[\begin{array}{cc}
11 & -1 \\
12 & 10
\end{array}\right]
$$

Check the dimensions. C is 2×2, and A is 2×3 so the product is defined and is 2×3.

$$
\begin{aligned}
C A & =\left[\begin{array}{ccc}
11(0)-1(-3) & 11(4)-1(3) & 11(9)-1(2) \\
12(0)+10(-3) & 12(4)+10(3) & 12(9)+10(2)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3 & 41 & 97 \\
-30 & 78 & 128
\end{array}\right]
\end{aligned}
$$

John and Paul both take a multiple choice test. Their results are shown in the table below.

	\# Correct	\# No Answer	\# Incorrect
John	18	7	5
Paul	20	0	10

Correct answers = 2 pts
No answer = 0 pts
Incorrect answer = -1 pt

How many points did John and Paul score?

Set up two matrices: one for their answers and one from the points awarded.

$$
P=\left[\begin{array}{cccc}
\text { Correct } & \text { Noattempt } & \text { Incorrect } \\
\\
18 & 7 & 5 \\
20 & 0 & 10
\end{array}\right] \quad \begin{gathered}
\text { John } \\
\text { Paul }
\end{gathered}
$$

$$
Q=\left[\begin{array}{l}
2 \\
0 \\
-1
\end{array}\right] \begin{aligned}
& \text { Correct } \\
& \text { No attempt } \\
& \text { Incorrect }
\end{aligned}
$$

Multiply the two matrices.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
18 & 5 & 7 \\
20 & 0 & 10
\end{array}\right] *\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right]} \\
& {\left[\begin{array}{c}
18(2)+7(0)+5(-1) \\
20(2)+0(0)+10(-1)
\end{array}\right]=\left[\begin{array}{l}
31 \\
30
\end{array}\right]}
\end{aligned}
$$

John scored 31 points and Paul scored 30 points.

