Pascal's Triangle

Pascal's Triangle is a shortcut to simplify a binomial raised to a power. i.e. $(x+3)^{5},(2-5 x)^{7}$, etc.

Example) Simplify $(x+2)^{5}$
$(x+2)^{5}=(x+2)^{2}(x+2)^{2}(x+2)$
$(x+2)^{2}=x^{2}+4 x+4$ by FOIL
$(x+2)^{5}=\left(x^{2}+4 x+4\right)\left(x^{2}+4 x+4\right)(x+2)$
$(x+2)^{5}=\left(x^{4}+8 x^{3}+24 x^{2}+32 x+16\right)(x+2)$ Distribute the trinomials
$(x+2)^{5}=x^{5}+10 x^{4}+40 x^{3}+80 x^{2}+80 x+32$ Distribute the binomial

The make Pascal's Triangle:
Each row has a one as its first and last term.
Any middle term is found by adding the two terms diagonally left and right above it.

Binomial Expansion

$$
\begin{array}{ll}
(a+b)^{0}= & 1 \\
\hline(a+b)^{1}= & a+b \\
\hline(a+b)^{2}= & a^{2}+2 a b+b^{2} \\
\hline(a+b)^{3}= & a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
\hline(a+b)^{4}= & a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
(a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
\end{array}
$$

The rows of Pascal's triangle give the coefficients of each term.
The exponents of "a" decrease ($\left.a^{3}, a^{2}, a^{1}, a^{0}\right)$
while the exponents of "b" increase ($\left.b^{0}, b^{1}, b^{2}, b^{3}\right)$

Expand the binomial $(3 x-4)^{4}$

$$
a=3 x \text { and } b=-4
$$

$\begin{array}{lllll}1 & 4 & 6 & 4 & 1\end{array}$
$1 a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+1 b^{4}$

Write the formula
Substitute a and b

$$
1(3 x)^{4}+4(3 x)^{3}(-4)+6(3 x)^{2}(-4)^{2}+4(3 x)(-4)^{3}+1(-4)^{4}
$$

Simplify
$81 x^{4}-432 x^{3}+864 x^{2}-768 x+256$

Expand the binomial $(x+2)^{7}$

$$
a=x \text { and } b=2
$$

$\begin{array}{lllllllll}1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 & \text { Write the row for Pascal's } \Delta\end{array}$

Write the formula

$$
1 a^{7}+7 a^{6} b+21 a^{5} b^{2}+35 a^{4} b^{3}+35 a^{3} b^{4}+21 a^{2} b^{5}+7 a b^{6}+1 b^{7}
$$

Substitute a and b
$1 x^{7}+7 x^{6}(2)+21 x^{5}(2)^{2}+35 x^{4}(2)^{3}+35 x^{3}(2)^{4}+21 x^{2}(2)^{5}+7 x(2)^{6}+1(2)^{7}$ Simplify

$$
x^{7}+14 x^{6}+84 x^{5}+280 x^{4}+560 x^{3}+672 x^{2}+448 x+128
$$

Determine the coefficient of x^{2} in the expansion of

$(3-x)^{3}$

$$
a=3 \text { and } b=-x
$$

$\begin{array}{llll}1 & 3 & 3 & 1\end{array}$
$1 a^{3}+3 a^{2} b+3 a b^{2}+1 b^{3}$
$3(3)(-x)^{2}$
$9 x^{2}$

Write the row for Pascal's Δ

Write the formula, and find the term with x^{2}

Substitute a and b

Simplify

