Polynomial Basics

A monomial is a single number or product of variables and numbers (i.e. $4,4 x^{2},-2 x y^{3}$)

A polynomial is the sum or difference of multiple monomials.

1 term: monomial
X
2 terms: binomial
$x+1$
3 terms: trinomial
$x^{2}+x+1$
4+ terms: polynomial
$x^{3}+x^{2}+x+1$

The degree of a monomial is the sum of its

 exponents.Identify the degree of each monomial.
A. z^{6}
$z^{6} \quad$ Identify the
exponent.
The degree is 6 .
C. $8 x y^{3}$
$8 x^{1} y^{3}$ Add the
exponents.
The degree is 4.
B. 5.6

$$
\begin{array}{r}
5.6=5.6 x^{0} \begin{array}{l}
\text { Identify the } \\
\text { exponent }
\end{array}
\end{array}
$$

The degree is 0 .
D. $a^{2} b c^{3}$
$a^{2} b^{1} c^{3} \quad$ Add the
exponents.
The degree is 6 .

The degree of a polynomial is given by the degree of its highest term.
$-4 x^{2}+3 x^{5}-1$ has a degree of 5

Standard form of a polynomial lists the terms by degree in descending order.
$4 x^{5}+x^{4}-2 x^{2}+x+1$

The leading coefficient is the coefficient of the first term in standard form.
$5 x^{2}+3 x$ has a leading coefficient of 5

Polynomial degrees:

Degree 0: Constant
Degree 1: Linear
Degree 2: Quadratic
Degree 3: Cubic
Degree 4: Quartic
Degree 5: Quintic
Degree 6+: nth degree polynomial
i.e. x^{10} means a $10^{\text {th }}$ degree polynomial

Polynomials are classified according to their degree and the \# of terms.

Classify each polynomial:
$\mathrm{P}(\mathrm{x})=5 \mathrm{x}^{4}-2 \mathrm{x}$
$N(x)=4+3 x+2 x^{2}-5 x^{5}$
Quartic binomial
Quintic polynomial

The end behavior of an even degree polynomial (2, 4, 6 , etc.) will be the same for both sides. ie. both will go to positive ∞, or both to negative ∞.
$4^{\text {th }}$ degree:

$6^{\text {th }}$ degree:

The end behavior of an odd degree polynomial (1, 3, 5 , etc.) will go in opposite directions.
ie. one goes to ∞ while the other goes to $-\infty$.
$3^{\text {rd }}$ degree:

$5^{\text {th }}$ degree:

Even degree function end behavior will go to positive ∞ unless it has been reflected.

Odd degree function end behavior will be
As $\mathrm{x} \rightarrow \infty, \mathrm{f}(\mathrm{x}) \rightarrow \infty$ and As $\mathrm{x} \rightarrow-\infty, \mathrm{f}(\mathrm{x}) \rightarrow-\infty$ unless it has been reflected.

In general, a polynomial function will have one fewer relative maximum/minimum than its degree.

A $5^{\text {th }}$ degree polynomial has 4 relative max/mins.

