Exponent Laws (Review)

Zero Power: Always equals 1

$$
4^{0}=1
$$

Negative Exponents:

Simplify negative exponents by switching them to the opposite part of the fraction (numerator \leftrightarrow denominator)

$$
x^{-3}=\frac{1}{x^{3}} \quad \frac{4^{5}}{x^{-2}}=4^{5} x^{2}
$$

Multiplied Bases: Add the exponents

$$
\left(2^{3}\right)\left(2^{5}\right)=2^{8}
$$

Divided Bases: Subtract the exponents: top minus bottom

$$
\frac{3^{5}}{3^{8}}=3^{-3}=\frac{1}{3^{3}}
$$

Power to a Power: Multiply the exponents

$$
\left(2^{3}\right)^{5}=2^{15}
$$

Product or quotient raised to a power: distribute the exponent to each term

$$
\begin{gathered}
(-3 x)^{5}=(-3)^{5} x^{5} \\
\left(\frac{x}{5}\right)^{5}=\frac{x^{5}}{5^{5}} \\
\left(2 x^{2} y^{3}\right)^{4}=2^{4} x^{8} y^{12} \\
(3+x)^{5} \neq 3^{5}+x^{5}
\end{gathered}
$$

This does not work if there is addition or subtraction (Use Pascal's Triangle instead)

Simplify the expression: $\frac{\left(3^{2}\right)^{x+1}}{3^{2+x} \cdot 3^{2 x}}$
$3^{2 x+2}$
$\overline{3^{2+3 x}}$
Power to a power: multiply exponents
Multiplying like bases: add exponents
$3^{2 x+2-(2+3 x)}$
Dividing like bases: subtract exponents
3^{-x}

Negative exponent: switch to opposite place
$\overline{3^{x}}$ in fraction
(you cannot finish a problem with a negative exponent)

