Quadratic Inequalities

Graph the solution to the inequality: $4>x^{2}-3 x-1$
$x^{2}-3 x-1=4$
$x^{2}-3 x-5=0$
$x=\frac{3 \pm \sqrt{29}}{2}$
$x=\frac{3+\sqrt{29}}{2}$ and $x=\frac{3-\sqrt{29}}{2}$
$x=4.193$ and $x=-1.193$

Write the inequality as an equation.
Get equation set equal to zero.
Solve the quadratic: use quadratic formula because the equation does not factor.

Graph the two lines and shade the part of the quadratic that is less than the line $\mathrm{y}=4$.

Solution region: (-1.193, 4.193)

Ex) Solve $2 x^{2}-6 x-32>-12$

$$
\begin{aligned}
& 2 x^{2}-6 x-32=-12 \\
& 2 x^{2}-6 x-20=0 \\
& 2\left(x^{2}-3 x-10\right)=0
\end{aligned}
$$

Write the inequality as an equation.
Get equation set equal to zero.
Solve the quadratic: This quadratic can be factored. Start with GCF.
$2(x-5)(x+2)=0$
$x-5=0$ and $x+2=0$
$x=5$ and $x=-2$

Think about the shape of the graph to determine the solution set. The parabola is upward facing because $a=2$. An upward facing parabola will be above $y=-12$ outside of the points of intersection.

You can substitute a value from the solution set into the original inequality to see if it holds true.

$$
2(6)^{2}-6(6)-32>-12
$$

$$
4>-12
$$

The solution set is $(-\infty,-2) \cup(5, \infty)$

Ex) A volleyball player serves a ball that follows the path given by the equation $y=-0.025 x^{2}+0.6 x+6$ with the origin directly below where the player hits the ball. The ball can be hit or blocked when it is 9 feet or lower. What distances from the player can the ball be hit or blocked?

$$
\begin{aligned}
& -0.025 x^{2}+0.6 \mathrm{x}+6 \leq 9 \\
& -0.025 \mathrm{x}^{2}+0.6 \mathrm{x}+6=9 \\
& -0.025 \mathrm{x}^{2}+0.6 \mathrm{x}-3=0 \\
& x=\frac{-.6 \pm \sqrt{.06}}{-.05} \\
& x=\frac{-.6+\sqrt{.06}}{-.05} \text { and } x=\frac{-.6-\sqrt{.06}}{-.05} \\
& x=16.899 \text { and } x=7.101
\end{aligned}
$$

Write an inequality for the problem.
Write the inequality as an equation. Get equation set equal to zero.

Solve the quadratic: use quadratic formula because the equation does not factor.

Here is the graph of the problem. The ball can be hit below the blue line $y=9$. We also need to find the x-value when the ball hits the ground.

$-0.025 x^{2}+0.6 x+6=0$
$x=\frac{-.6 \pm \sqrt{.96}}{-.05}$
$x=\frac{-.6+\sqrt{.96}}{-.05}$ and $x=\frac{-.6-\sqrt{.96}}{-.05}$
$x=-7.596$ and $x=31.596$

Set equation equal to zero to find when the ball is on the ground.

Solve the quadratic: use quadratic formula because the equation does not factor.

The solution set is $[0,7.101] \cup[16.899,31.596]$

