\qquad
Determine the reasonable domain and range for each question.

1) A dud missile is fired straight into the air from a military instillation. The missile's height is given by the formula: $h(t)=-16 t^{2}+400 t+100$.
2) A rock is dropped on the surface of Mars from a height of 100 feet. The height of a falling rock as a function of time since it was dropped on Mars can be modeled by the equation: $h(t)=-6.5 t^{2}+100$.
3) A ball is thrown from ground level upward at an initial velocity of $60 \mathrm{ft} / \mathrm{sec}$. The equation for "projectile motion" is $\mathrm{h}(\mathrm{t})=-16 \mathrm{t}^{2}+60 \mathrm{t}$

Determine a reasonable timeframe for each problem.

4) A ball is thrown upward from the surface of Mars with an initial velocity of $60 \mathrm{ft} / \mathrm{sec}$. The equation for "projectile motion" on Mars is: $h(t)=-6.5 t^{2}+60 t$. Determine the timeframe when the ball is above 100 feet.
5) A rock is thrown upward from the top of a 25 foot tower with an initial upward velocity of $100 \mathrm{ft} / \mathrm{sec}$. The height of a rock above the ground as a function of time can be modeled by the equation: $h(t)=-16 t^{2}+100 t+25$. Determine the timeframe when the rock is at or below a height of 20 feet.
6) A woodland jumping mouse hops along the ground along a parabolic path that can be modeled by the following equation: $\mathrm{y}=-0.2 \mathrm{x}^{2}+1.3 \mathrm{x}$ (where x is the is the horizontal position in feet and y is the height in feet). Determine the range of heights for the mouse between 2 and 3.5 seconds.
