Reasonable Domain and Range

Sometimes you should restrict the domain and range of a function based on the context of the problem because it wouldn't make sense to use the entire domain/range.

Word problems that deal with time typically have their domain restricted so that $\mathrm{t} \geq 0$.

Problems with height often restrict their range so that $\mathrm{h} \geq 0$.

Ex 1) An object is launched at 19.6 meters per second $(\mathrm{m} / \mathrm{s})$ from a 58.8 -meter tall platform. The equation for the object's height after launch is $s(t)=-4.9 t^{2}+19.6 t+$ 58.8 , where s is in meters and t is in seconds. What would be a reasonable domain and range for the object flight?

$$
\begin{aligned}
&-4.9 t^{2}+19.6 t+58.8=0 \\
& x= \frac{-19.6 \pm \sqrt{(19.6)^{2}-4(-4.9)(58.8)}}{2(-4.9)} \quad \begin{array}{l}
\text { Use the quadratic formula to } \\
\text { find the zeros (i.e. when the } \\
\text { height is zero). }
\end{array} \\
& x=\frac{-19.6+\sqrt{1536.64}}{-9.8} \quad x=\frac{-19.6-\sqrt{1536.64}}{-9.8} \\
& x=-2 \quad x=6
\end{aligned}
$$

The object starts its flight at time $\mathrm{t}=0$ and will stop its flight when it hits the ground.
Domain: [0, 6]

The highest point of the flight will occur at the vertex.

$$
\begin{array}{ll}
x=\frac{-b}{2 a} & s(2)=-4.9(2)^{2}+19.6(2)+58.8 \\
x=\frac{-(19.6)}{2(-4.9)} & s(2)=78.4 \\
x=\frac{-19.6}{-9.8}=2 & \text { Vertex: }(2,78.4)
\end{array}
$$

The object reaches a maximum of 78.4 and will land on the ground at a height of 0 .
Range: [0, 78.4]

Ex 2) An object in launched directly upward at 64 feet per second (ft / s) from a platform 80 feet high. The equation for its path is $h(t)=-16 t^{2}+64 t+80$. What timeframe will the object's height be above 120 feet?

$$
\begin{aligned}
& -16 t^{2}+64 t+80=120 \\
& -16 t^{2}+64 t-40=0 \\
& x=\frac{-64 \pm \sqrt{(64)^{2}-4(-16)(-40)}}{2(-16)} \\
& x=\frac{-64+\sqrt{1536}}{-32} \\
& x=\frac{-64-\sqrt{1536}}{-32} \\
& x=.775 \quad x=3.225 \\
& \text { Use the quadratic formula to } \\
& \text { find when the height is } 120 \text {. }
\end{aligned}
$$

The object has a height of 120 at $\mathrm{x}=.775$ and $\mathrm{x}=3.225$. The object is above 120 between those two times because the parabola faces downward. Use parenthesis because it is strictly above 120. Domain: $(0.775,3.225)$

Ex 3) An object is launched from ground level directly upward at $39.2 \mathrm{~m} / \mathrm{s}$. Its path is modeled by the equation $h(t)=-4.9 t^{2}+39.2 t$. Determine a range of heights for the object between 3 and 6 seconds.
Find the height at $t=2$ and $t=5$

$$
\begin{aligned}
& h(3)=-4.9(3)^{2}+39.2(3) \\
& h(3)=73.5 \\
& h(6)=-4.9(6)^{2}+39.2(6) \\
& h(6)=58.8
\end{aligned}
$$

Consider the vertex because
it is between 3 and 6

$$
\begin{gathered}
x=\frac{-b}{2 a} \quad x=\frac{-(39.2)}{2(-4.9)} \\
x=\frac{-39.2}{-9.8}=4 \\
h(4)=-4.9(4)^{2}+39.2(4)
\end{gathered}
$$

$$
h(4)=78.4
$$

Vertex: $(4,78.4)$
The object's lowest height is 58.8 and its highest height is 78.4 (at the vertex). Use a bracket on 78.4 because the object does reach this height. Range: (58.8, 78.4]

