\qquad

1) The mass m in kilograms of a bronze statue varies directly as its volume V in cubic centimeters. If a statue made from $1000 \mathrm{~cm}^{3}$ of bronze has a mass of 8.7 kg , what is the mass of a statue made from $4500 \mathrm{~cm}^{3}$ of bronze?
2) The time t in hours needed to clean the rides at an amusement park varies inversely with the number of workers n. If 6 workers can clean the rides in 6 hours, how many hours will it take 10 workers to clean the rides?
3) Determine whether the data set represents a direct variation or inverse variation, determine the constant coefficient and the equation for this set.

\mathbf{x}	2	5	10
\mathbf{y}	25	10	5

Identify any places of discontinuity for each rational function (i.e. holes and vertical asymptotes).
4) $f(x)=\frac{2 x^{3}-18 x}{x^{2}+3 x-18}$
5) $f(x)=\frac{x^{2}+x-12}{x^{2}-16}$

Identify all asymptotes (vertical, horizontal, oblique) of the following functions.
6) $f(x)=\frac{\left(x^{2}-3 x+2\right)(x-3)}{(x-1)\left(x^{2}-5 x+6\right)}$
7) $f(x)=\frac{x^{2}-2 x-3}{3 x^{2}-3 x}$
8) $f(x)=\frac{-3 x^{2}+2}{x-1}$

Find the zeros of the following functions.
9) $f(x)=\frac{3 x+2}{x-2}$
10) $f(x)=\frac{x^{2}-x}{x^{2}-25}$

Identify the following attributes of each function. Then graph.
11) $g(x)=\frac{-3}{x+5}$

Vertical asymptote (s): \qquad
Horizontal asymptote (s): \qquad
Domain: \qquad
Range: \qquad
Holes: \qquad
Zeros: \qquad
Y-Int: \qquad
12) $f(x)=\frac{4 x^{2}-1}{2 x^{2}+5 x-3}$

Vertical asymptote (s): \qquad
Horizontal asymptotes): \qquad
Domain: \qquad
Range: \qquad
Holes: \qquad
Zeros: \qquad
Y-Int: \qquad

Write the equation of a rational function with the given characteristics:
13) zero at 0 , vertical asymptotes as $x=-3$ and $x=3$, and holes at $x=-1$ and $x=1$
14) zero at $\mathrm{x}=3$, vertical asymptotes at $\mathrm{x}=7$ and $\mathrm{x}=2$, and a horizontal asymptote at $\mathrm{y}=1$

Solve. Identify any extraneous solutions.
15) $\frac{x^{2}+3 x-10}{x-2}=7$
16) $\frac{3}{x^{2}-9}+\frac{5}{x+3}=\frac{10}{x+3}$

Solve each rational inequality. Write the solution using interval notation.
17) $\frac{x+4}{x}>-2$
18) $\frac{2}{x-3}<4$

Multiply or divide. Assume that all expressions are defined.
19) $\frac{x+3}{x+2} \bullet \frac{2 x-4}{x^{2}-9}$
20) $\frac{3 x^{2}+6 x-24}{x^{2}-x-20} \div \frac{3 x^{3}-9 x^{2}+6 x}{x}$

Add or subtract. Identify any \boldsymbol{x}-values for which the expression is undefined.
21) $\frac{5 x-1}{x+3}+\frac{3 x}{2 x+6}$
22) $\frac{3 x}{x^{2}-x-6}-\frac{5}{x^{2}-8 x+15}$

Solve each rational "work" problem.

23) Suppose one painter can paint an entire house in twelve hours and a second painter takes 8 hours to complete the same house. How long would it take the two painters if they worked together?
24) A kayaker spends an afternoon paddling on a river. She travels 3 miles upstream and 3 miles downstream in a total of 4 hours. In still water, the kayaker can travel an average speed of 2 miles/hour. Based on this information, what is the average speed of the river's current?
