
Solving 2x2 Linear Systems (Graphing and Substitution) A 2x2 system has 2 variables and 2 equations.

On a graph, the solution is where the two lines intersect.

Solve both equations to y = and graph.

Solve
$$\begin{cases} 2x - 4y = 8\\ \frac{1}{2}y = 2x + 2.5 \end{cases}$$
 by graphing.

Solve to y =
$$2x - 4y = 8$$

 $-4y = -2x + 8$
 $y = 1/2x - 2$

Solving by Substitution:

Solve one equation for one of its variables and then substitute that into the other equation. Example)

Solve
$$\begin{cases} 2x - 4y = 8\\ \frac{1}{2}y = 2x + 2.5 \end{cases}$$

 $\frac{1}{2}y = 2x + 2.5$ y = 4x + 5 Solve the 2nd equation for y because that looks like the easiest variable to solve for.

2x - 4y = 8	Substitute the equation $y = 4x + 5$ into y of the other equation.
2x - 4(4x + 5) = 8	
2x - 16x - 20 = 8	Solve for x: distribute the -4
-14x - 20 = 8	Solve for x: combine like terms
-14x = 28	Solve for x: and 20 to both sides
x = -2	Solve for x: divide by -14

Substitute the x-value you find into the y = equation to get y.

y = 4x + 5y = 4(-2) + 5y = -8 + 5y = -3Substitute x = -2 to find y

The solution is the point (-2, -3)

Solve
$$\begin{cases} x - 2y = -3 \\ 3x - 7y = -14 \end{cases}$$
$$x - 2y = -3$$
$$x = 2y - 3$$
$$3x - 7y = -14 \qquad S \\ 3(2y - 3) - 7y = -14 \qquad S \\ -y - 9 = -14 \qquad S \end{cases}$$

-y = -5

v = 5

into x of the other equation. Solve for y: distribute the 3 Solve for y: combine like terms Solve for y: and -9 to both sides Solve for y: divide by -1

Substitute the equation x = 2y - 3

Solve the 1st equation for x because that looks like the easiest variable to solve for. Substitute the y-value you find into the x = equation to get x.

x = 2y - 3 Substitute y = 5 to find x x = 2(5) - 3 x = 10 - 3 x = 7

The solution is the point (7, 5)

Solve $\begin{cases} 3x = y + 6\\ 6x - 2y = 3 \end{cases}$	
3x = y + 6	
y = 3x - 6	
6x - 2y = 3 6x - 2(3x - 6) = -3	S ir
6x – 6x + 12 = -3	S
12 = -3	S

Solve the 1st equation for y because that looks like the easiest variable to solve for.

Substitute the equation y = 3x - 6 into y of the other equation.

Solve for x: distribute the -2

Solve for x: combine like terms

12 = -3 is a false statement. This means that there is <u>no solution</u> to the system because we cannot choose values of x and y that would ever make 12 = -3 true. Graphically, these two lines must be parallel.

Solve
$$\begin{cases} -2x - 2y = -6 \\ x = 3 - y \end{cases}$$
The 2nd equation is already solved for x.
$$-2x - 2y = -6 \qquad \text{Substitute the equation } x = 3 - y \\ -2(3 - y) - 2y = -6 \qquad \text{into } x \text{ of the other equation.} \end{cases}$$
$$-6 + 2y - 2y = -6 \qquad \text{Solve for } y: \text{ distribute the } -2 \\ -6 = -6 \qquad \text{Solve for } y: \text{ combine like terms} \end{cases}$$

-6 = -6 is a true statement. This means that there are <u>infinitely</u> <u>many solutions</u> to the system because we cannot choose values of x and y that would ever make -6 = -6 false. Graphically, these two lines must coincide (one on top of the other; are the same).