Solving 3x3 Systems

Solve the system.
$2 x-4 y+z=10$
$x+2 y-z=1$
$-x-3 y+2 z=0$
Step 1: Select an equation and solve it for a variable. The $1^{\text {st }}$ or $2^{\text {nd }}$ would be good choices because one of their variables has a coefficient of +1 . Let's solve the second equation for x.
$x+2 y-z=1$
$x=-2 y+z+1$

Step 2: Substitute this equation into the other two equations. Simplify.

$$
\begin{aligned}
& 2 x-4 y+z=10 \\
& 2(-2 y+z+1)-4 y+z=10 \\
& -4 y+2 z+2-4 y+z=10 \\
& -8 y+3 z+2=10 \\
& -8 y+3 z=8
\end{aligned}
$$

$$
\begin{aligned}
& -x-3 y+2 z=0 \\
& -(-2 y+z+1)-3 y+2 z=0 \\
& 2 y-z-1-3 y+2 z=0 \\
& -y+z-1=0 \\
& -y+z=1
\end{aligned}
$$

Now we have a system of two equations with two variables.
$-8 y+3 z=8$
$-y+z=1$

Step 3: Solve one of the equations for a variable. Choose the $2^{\text {nd }}$ and solve for z .
$-y+z=1$
$z=y+1$
Step 4: Substitute this equation into the other. Solve for the variable.
$-8 y+3 z=8$
$-8 y+3(y+1)=8$
$-8 y+3 y+3=8$
$-5 y+3=8$
$-5 y=5$
$y=-1$

Step 5: Substitute the value of y into the equation for z.
$z=y+1$
$z=(-1)+1$
$\mathrm{z}=0$

Step 6: Substitute the values of y and z into the equation for x.
$x=-2 y+z+1$
$x=-2(-1)+0+1$
$x=2+0+1$
$x=3$

The solution to the system is:

$$
x=3, \quad y=-1, \quad z=0
$$

As an order triple: $(3,-1,0)$

Solve the system.
$3 x-y+z=-1$
$2 x+3 y+z=4$
$5 x+4 y+2 z=5$

Step 1: Select an equation and solve it for a variable. Let's solve the first equation for z.
$3 x-y+z=-1$
$z=-3 x+y-1$

Step 2: Substitute this equation into the other two equations. Simplify.
$2 x+3 y+z=4$
$2 x+3 y+(-3 x+y-1)=4$
$2 x+3 y-3 x+y-1=4$
$-x+4 y-1=4$
$-x+4 y=5$
Now we have a system of two equations with two variables.
$-x+4 y=5$
$-x+6 y=7$

Step 3: Solve one of the equations for a variable. Choose the $1^{\text {st }}$ and solve for x.
$-x+4 y=5$
$-x=-4 y+5$
$x=4 y-5$
Step 4: Substitute this equation into the other. Solve for the variable.
$-x+6 y=7$
$-(4 y-5)+6 y=7$
$-4 y+5+6 y=7$
$2 y+5=7$
$2 y=2$
$y=1$

Step 5: Substitute the value of y into the equation for x.
$x=4 y-5$
$x=4(1)-5$
$x=4-5$
$x=-1$
Step 6: Substitute the values of x and y into the equation for z.

$$
\begin{aligned}
& z=-3 x+y-1 \\
& z=-3(-1)+(1)-1 \\
& z=3+1-1 \\
& z=3
\end{aligned}
$$

The solution to the system is:

$$
x=-1, \quad y=1, \quad z=3
$$

As an order triple: $(-1,1,3)$

Solve the system.
$3 x-y+4 z=-10$
$-x+y+2 z=6$
$2 x-y+z=-8$

Step 1: Select an equation and solve it for a variable. Any equation would work because they all have a variable with a coefficient of 1 . Let's choose the $2^{\text {nd }}$ and solve for y.
$-x+y+2 z=6$
$y=x-2 z+6$

Step 2: Substitute this equation into the other two equations. Simplify.
$3 x-y+4 z=-10$
$3 x-(x-2 z+6)+4 z=-10$
$3 x-x+2 z-6+4 z=-10$
$2 x+6 z=-4$

$$
2 x-y+z=-8
$$

$$
2 x-(x-2 z+6)+z=-8
$$

$$
2 x-x+2 z-6+z=-8
$$

$$
x+3 z=-2
$$

Now we have a system of two equations with two variables.
$2 x+6 z=-4$
$x+3 z=-2$

Step 3: Solve one of the equations for a variable. Choose the $2^{\text {nd }}$ and solve for x .
$x+3 z=-2$
$x=-3 z-2$
Step 4: Substitute this equation into the other. Solve for the variable.
$2 x+6 z=-4$
$2(-3 z-2)+6 z=-4$
$-6 z-4+6 z=-4$
$-4=-4$
This equation is always true. This means that the value of z does not impact the solution. It could be literally any and every number. Therefore, there are infinitely many solutions.

