## Solving Absolute Value Equations

When solving absolute value functions, you must consider two cases:

The absolute value is positive and the absolute value is negative.

This is because $|x|=5$ when $x=5$ and $x=-5$.

Positive case:
Drop abs. value bars

## Negative case:

Drop abs. value bars,
Negate opp. side of $=$

Solve: $|x+3|=7$

Case 1:
$x+3=7$
$x=4 \quad$ Subtract 3

Case 2:

$$
\begin{aligned}
& x+3=-(7) \\
& x+3=-7
\end{aligned}
$$

$$
x=-10 \quad \text { Subtract } 3
$$

Substitute to check your answers

$$
\begin{array}{ll}
|4+3|=7 & |-10+3|=7 \\
|7|=7 & |-7|=7 \\
7=7 & 7=7
\end{array}
$$

Solve: $|2 x-10|=-3$

Case 1:

$$
2 x-10=-3
$$

$2 x=7 \quad$ Add 10
$x=3.5$ Divide by 2

Case 2:

$$
\begin{aligned}
& 2 x-10=-(-3) \\
& 2 x-10=3 \\
& 2 x=13 \quad \text { Add } 10 \\
& x=6.5 \quad \text { Divide by } 2
\end{aligned}
$$

Substitute to check your answers

$$
\begin{array}{cc}
|2(3.5)-10|=-3 & |2(6.5)-10|=-3 \\
|-3|=-3 & |3|=-3 \\
3 \neq-3 & 3 \neq-3
\end{array}
$$

Both answers are extraneous.
There is no solution.

Extraneous solution: A solution you get when solving that does not work when substituted back in.
Extraneous solutions are not solutions to the equation.

As you can see, the abs. value graph does not intersect the line $y=-3$. Hence, no solution.


You find the extraneous solutions by extending the sides of the graph


Solve: $2|x+5|-1=11$
$2|x+5|=12$
$|x+5|=6$

## Isolate the absolute value before doing the two cases.

Case 1:
$x+5=6$
$x=1 \quad$ Subtract 5
$2|1+5|-1=11$
$2|6|-1=11$
$11=11$
$x=1$ is a solution

Case 2:
$x+5=-6$
$x=-11 \quad$ Subtract 5
$2|-11+5|-1=11$
$2|-6|-1=11$
$11=11$
$x=-11$ is a solution

Solve: $1 / 2|4 x+2|=8 x+9$
$|4 x+2|=2(8 x+9)$
$|4 x+2|=16 x+18$
Case 1:

$$
4 x+2=16 x+18
$$

$-16=12 x \quad$ Group like terms
$x=-1 . \overline{3} \quad$ Divide
$1 / 2|-3 . \overline{3}|=-10 . \overline{6}+9$
$1 . \overline{6}=-1 . \overline{6}$
$x=-1 . \overline{3}$ is extraneous.

Isolate the absolute value before doing the two cases.

Case 2:

$$
\begin{aligned}
& 4 x+2=-(16 x+18) \begin{array}{l}
\text { Negate the } \\
\text { right side. }
\end{array} \\
& 4 x+2=-16 x-18 \\
& 20 x=-20 \quad \text { Group like terms } \\
& x=-1 \quad \text { Divide }
\end{aligned}
$$

$$
1 / 2|4(-1)+2|=8(-1)+9
$$

$$
1 / 2|-2|=-8+9
$$

$$
1=1
$$

$x=1$ is the solution

Solve: $3|x-5|=3 x+6$
$|x-5|=x+2$
Case 1:
$x-5=x+2$
$-5=2$
DNE

The x's cancel
-5 does not
equal 2, parallel

Isolate the absolute value before doing the two cases.
Case 2:

$$
\begin{aligned}
& x-5=-(x+2) \\
& x-5=-x-2 \quad \begin{array}{l}
\text { Negate the } \\
\text { side }
\end{array} \\
& 2 x=3 \quad \text { Group like terms } \\
& x=1.5 \quad \text { Divide } \\
& 3|1.5-5|=3(1.5)+6 \\
& 3|-3.5|=4.5+6 \\
& 10.5=10.5 \\
& x=1.5 \text { is the solution. }
\end{aligned}
$$

