Solving By Completing the Square	
Solve: $2(x - 3)^2 + 9 = 26$	
$2(x-3)^2 = 17$	Subtract 9 from each side.
$(x - 3)^2 = 8.5$	Divide each side by 2.
$x - 3 = \pm \sqrt{8.5}$	Square root each side. You will get both a positive and negative root.
$x = 3 \pm \sqrt{8.5}$	Add 3 to each side.
$x = 3 - \sqrt{8.5}$ and $x = 3 + \sqrt{8.5}$	There are two answers: one with $+$ and one with $-$
x ≈ 0.085 and x ≈ 5.915	You can write the answers as decimals.

Complete the square and set y = 0 to solve the equation: $y = x^2 - 4x + 1$

$$y = (x^2 - 4x + __) + 1 - ___$$

$$y = (x^2 - 4x + (-2)^2) + 1 - (-2)^2$$

$$y = (x - 2)^2 - 3$$

$$(x-2)^2-3=0$$

$$(x-2)^2 = 3$$

$$x - 2 = \pm \sqrt{3}$$

$$x = 2 \pm \sqrt{3}$$

x = 2
$$-\sqrt{3}$$
 and x = 2 $+\sqrt{3}$

Re-write the equation with 2 blanks.

Fill in each blank with
$$\left(\frac{b}{2}\right)^2$$

Factor the perfect square trinomial and combine like terms.

Set y = 0.

Add 3 to both sides.

Square root each side. You will get both a positive and negative root.

Add 2 to both sides.

There are two answers: one with $+\sqrt{}$ and one with $-\sqrt{}$

Use completing the square to determine the values of x where: $4x^2 - 4x - 8 = -12x + 1$	
$4x^2 + 8x - 9 = 0$	Bring all terms to one side of the equal sign
$y = 4x^2 + 8x - 9$	Write as y =
$\frac{1}{4}y = x^2 + 2x - 2.25$	Divide everything by a.
$\frac{1}{4}$ y = (x ² + 2x +) - 2.25	Re-write the equation with 2 blanks.
$\frac{1}{4}y = (x^2 + 2x + (1)^2) - 2.25 - (1)^2$	Fill in each blank with $\left(\frac{b}{2}\right)^2$
$\frac{1}{4}y = (x + 1)^2 - 3.25$	Factor the perfect square trinomial and combine like terms.
$y = 4(x + 1)^2 - 13$	Multiply each term by a.

Set y = 0.

Add 13 to each side.

Divide each side by 4.

Square root each side. You will get both a positive and negative root.

Subtract 1 from each side.

There are two answers: one with $+\sqrt{}$ and one with $-\sqrt{}$