Solving Cube Root (and Other Power) Functions

Solve the equation: $2 \sqrt[3]{2 x-3}-22=0$

$$
\begin{aligned}
2 \sqrt[3]{2 x-3} & =22 & & \text { Isolate the radical } \\
\sqrt[3]{2 x-3} & =11 & & \text { Isolate the radical } \\
(\sqrt[3]{2 x-3})^{3} & =(11)^{3} & & \text { Cube both sides } \\
2 x-3 & =1331 & & \text { Simplify } \\
2 x & =1334 & & \text { Solve for } x \\
x & =667 & &
\end{aligned}
$$

Solve the equation: $\sqrt[4]{4 x+3}=2 \sqrt[4]{x-1}$

$$
\begin{aligned}
(\sqrt[4]{4 x+3})^{4} & =(2 \sqrt[4]{x-1})^{4} & & \text { Raise each side to the } 4^{\text {th }} \text { power } \\
4 x+3 & =16(x-1) & & \text { Simplify } \\
4 x+3 & =16 x-16 & & \text { Distribute } \\
19 & =12 x & & \text { Solve for } x \\
x & =\frac{19}{12} & &
\end{aligned}
$$

Solve the equation: $\sqrt[5]{(2 x+2)^{2}}=3$

$$
\begin{array}{cl}
\left(\sqrt[5]{(2 x+2)^{2}}\right)^{5}=(3)^{5} & \text { Raise each side to the } 5^{\text {th }} \text { power } \\
(2 x+2)^{2}=243 & \text { Simplify } \\
\sqrt{(2 x+2)^{2}}=\sqrt{243} & \text { Square root } \\
2 x+2=15.588 & \text { Simplify } \\
2 x=13.588 & \text { Solve for } x \\
x \approx 6.794 &
\end{array}
$$

A rational exponent is an exponent that is a fraction.

When converting a root expression to a rational exponent, the root goes in the denominator.

$$
\begin{aligned}
& \sqrt[3]{x^{5}}=x^{5 / 3} \\
& \sqrt[10]{x^{7}}=x^{7 / 10} \\
& \sqrt[5]{(x-2)^{2}}=(x-2)^{2 / 5} \\
& \sqrt[6]{(5 x)^{8}}=(5 x)^{8 / 6}=(5 x)^{4 / 3}
\end{aligned}
$$

$\sqrt[3]{x^{2}+5}$ cannot re-write because 5 isn't being squared

Solve the equation: $\sqrt[5]{(2 x+2)^{2}}=3$

$$
(2 x+2)^{2 / 5}=3
$$

Re-write exponent as a fraction
$\left((2 x+2)^{2 / 5}\right)^{5 / 2}=(3)^{5 / 2} \quad$ Raise to the reciprocal power

$$
\begin{array}{rlrl}
2 x+2=15.588 & & \text { Simplify } \\
2 x & =13.588 & & \text { Solve for } x \\
x & \approx 6.794 &
\end{array}
$$

