Solving Exponential and Log Equations

Step 1a: Isolate the exponential/log
Step 1b: Simplify using exponential/log properties

Step 2: Convert between exponential/log equation

Step 3: Solve the equation

Solve.

$\log _{4}(6 x)-3=-1$
$\log _{4} 6 x=2$
$6 x=4^{2}$
Isolate the logarithm
Convert from log to exponential equation
$6 x=16$
Simplify and solve for x.
$x=2 . \overline{6}$

Solve.

$3^{2 x}-8=2$
$3^{2 x}=10$
$2 x=\log _{3} 10$
$x=\frac{1}{2} \log _{3} 10 \quad$ Solve for x
$x=1.048$

Isolate the exponential

Convert from exponential to log

Solve.

$\log _{2}\left(x^{2}\right)+5=4$
$\log _{2} x^{2}=-1$
$x^{2}=2^{-1}$
$x^{2}=\frac{1}{2}$
$x=\sqrt{1 / 2}=0.707$

Alternate way
$\log _{2} x^{2}=-1$
$2 \log _{2} x=-1$
$\log _{2} x=\frac{-1}{2}$
$x=2^{-1 / 2}=0.707$

Solve.

$\log _{4} 2 x+\log _{4} 3=2$
$\log _{4} 6 x=2$
Condense into one log
$6 x=4^{2}$
Convert from log to exponential
$6 x=16$
Simplify and solve for x
$x=2 . \overline{6}$

Solve.

$$
\begin{aligned}
& 2 e^{x-1}=\frac{12}{e^{3}} \\
& 2 e^{x-1} \cdot e^{3}=12 \\
& 2 e^{x+2}=12 \\
& e^{x+2}=6 \\
& x+2=\ln 6 \\
& x=\ln (6)-2 \\
& x=-0.208
\end{aligned}
$$

Solve for \mathbf{x}.

$$
b^{3 x}+a=w
$$

$b^{3 x}=w-a$
$3 x=\log _{b}(w-a)$
$x=\frac{1}{3} \log _{b}(w-a) \quad$ Solve for x.

Solve. $\log _{2}(x+2)=3-\log _{2} x$
$\log _{2}(x+2)+\log _{2}(x)=3 \quad$ Bring all logs to one side
$\log _{2}\left(x^{2}+2 x\right)=3$
Condense using log properties
$x^{2}+2 x=2^{3}$
Convert from log to exponential
$x^{2}+2 x=8$
Simplify and solve for x
$x^{2}+2 x-8=0$
$(x+4)(x-2)=0$
$x+4=0$ and $x-2=0$
$x=-4$ and $x=2$
$\mathrm{x}=-4$ is extraneous because you cannot take the log of zero or a negative number.

