$\qquad$
Solve the following systems of linear inequalities by graphing them on the coordinate plane.

1) $\left\{\begin{array}{l}y<\frac{1}{2} x-3 \\ y \geq-x+2\end{array}\right.$
2) $\left\{\begin{array}{l}x-3 y<6 \\ 2 x+y>1.5\end{array}\right.$


3) $\left\{\begin{array}{l}y \leq-2 x+4 \\ y>x-3\end{array}\right.$

4) $\left\{\begin{array}{l}y<-3 x+5 \\ y \leq x-2\end{array}\right.$

5) The solution to a system of linear inequalities is shown on the graph below. Indicate whether each point listed below is (Yes) or is not (No) part of the solution region for the graph.

$(-3,1)$ $\qquad$ $(-4,-6)$ $\qquad$ $(2,1)$ $\qquad$
$(-2,0)$ $\qquad$ $(-4,0)$ $\qquad$ $(-2,6)$ $\qquad$
$(0,4)$
$(0,0)$ $\qquad$ $(-20,15)$ $\qquad$
6) $\left\{\begin{array}{l}x \geq-2 \\ x \leq 3 \\ y \geq-x+1 \\ y \leq 4\end{array}\right.$

7) $\left\{\begin{array}{l}x \leq 6 \\ \frac{1}{2} x-y \geq 1 \\ 2 x+y \geq 6\end{array}\right.$


Determine the system of inequalities that could be used to create the solution region graphed below.

10) Israel was given a system of 4 inequalities to graph. He determined that four vertices created the boundary points for the solution region. The vertices are: $(-2,-2),(-2,4),(2,2)$, and $(2,6)$. Write and graph the 4 linear inequalities that made up Israel's system.


