Solving Polynomials by Factoring

$$
\begin{array}{ll}
4 x^{5}+4 x^{4}-\mathbf{2 4} x^{3}=0 \\
4 x^{3}\left(x^{2}+x-6\right)=0 & \text { Factor out the GCF, } 4 x^{4} \\
4 x^{3}(x+3)(x-2)=0 & \text { Factor the quadratic. } \\
4 x_{\uparrow}^{3}=0 \text { or }(x+3)=0 \text { or }(x-2)=0 & \begin{array}{l}
\text { Set each factor } \\
\text { equal to } 0 .
\end{array} \\
x=0, x=-3, x=2 & \text { Solve for } x . \\
x=0 \text { is a triple root (multiplicity of } 3) ; \\
-3 \text { and } 2 \text { are both single roots. }
\end{array}
$$

Solve the polynomial equation by factoring. $2 x^{3}-20 x^{2}=-50 x$
$2 x^{3}-20 x^{2}+50 x=0$
$2 x\left(x^{2}-10 x+25\right)=0$
$2 x(x-5)(x-5)=0$
$2 x=0$ or $(x-5)^{2}=0$
$x=0, x=5$

Write in standard form.
Factor out the GCF, $2 x^{4}$.
Factor the quadratic.
Set each factor
equal to 0 .
Solve for x.
$x=5$ is a double root and $x=0$ is a single root.

Solve the polynomial equation by factoring. $x^{3}-2 x^{2}-25 x=-50$
$x^{3}-2 x^{2}-25 x+50=0 \quad$ Set the equation equal to 0 .
$x^{2}(x-2)-25(x-2)=0 \quad$ Factor by grouping.
$\left(x^{2}-25\right)(x-2)=0$
$(x+5)(x-5)(x-2)=0 \quad$ Factor by diff of squares.
$x+5=0, x-5=0$, or $x-2=0$
The roots are $-5,5$, and 2 .

Solve the polynomial equation by factoring.

$x^{3}+3 x^{2}-7 x=0$
$x\left(x^{2}+3 x-7\right)=0$
$1 x^{2}+3 x-7=0$
$b^{2}-4 a c$
$(3)^{2}-4(1)(-7)$
Discriminant $=37$

$$
x=\frac{-3 \pm \sqrt{37}}{2}
$$

$$
x=\frac{-3+\sqrt{37}}{2} \quad x=\frac{-3-\sqrt{37}}{2}
$$

$x \approx 1.541$

$$
x \approx-4.541
$$

Factor the GCF; what is inside the parenthesis cannot factor. Use quadratic formula.
Set the parenthesis $=0$.
Evaluate the discriminant

Sub into the quadratic formula.
Write as two answers: one plus, one minus. Simplify.

The zeros are $x=-4.541, x=1.541$, and $x=0(\leftarrow$ from the GCF).

Write a polynomial that has a zero at 4 with double multiplicity, a zero at -1 , and a zero at zero.

$$
\begin{array}{ccc}
\text { Mult. of } 2 & \text { Mult. of } 1 & \text { Mult. of } 1 \\
(x-4)^{2} & (x+1) & (x) \\
\text { Zero at } 4 & \text { Zero at -1 } & \text { Zero at 0 } \\
P(x)=(x-4)^{2}(x+1)(x) & \text { Multiply the factors }
\end{array}
$$

This polynomial has a degree of 4
Add the exponents: $2+1+1=4$.

Write a polynomial that has a zero at 5 multiplicity of 2 , a zero at 3 , a zero at -3 with multiplicity 3 , and a zero at zero.
Mult. of
$(x-5)^{2}$
Mult. of 1
Mult. of 3
Mult. of 1
$(x-3)$
$(x+3)^{3}$
(x)
Zero at 5
Zero at 3 Zero at -3
Zero at 0
$P(x)=(x-5)^{2}(x-3)(x+3)^{3}(x)$
Multiply the factors
This polynomial has a degree of 7
Add the exponents: $2+1+3+1=7$.

