Solving Polynomials with Complex Roots

Some roots have a multiplicity meaning they are a double, triple, or more root.

Single roots

What kind(s) of roots does this graph have?

This graph has 2 double roots and 1 single root, 4 turns. It is degree 5 .

Determine the degree of the polynomial from its graph.

This graph has 1 double root and 2 single roots, it has 5 turns. So it must be at least degree 6 based on the turns.

If the polynomial is degree 6 but only has 4 roots accounted for (1 double, 2 single), then where are the other two roots? They're imaginary!

The degree of a polynomial tells you how many zeroes it will have. A $4^{\text {th }}$ degree will always have 4 roots.

Some of those 4 zeroes may be imaginary.

Imaginary solutions always come in pairs.
(i.e. $+4 i$ and $-4 i$ or $3+2 i$ and $3-2 i$)

A $4^{\text {th }}$ degree polynomial could have: 4 real roots, 2 real and 2 imaginary, or 4 imaginary.

Use the graphing, synthetic division, and (possibly) the quadratic formula to solve.

Solve $x^{4}-3 x^{3}+5 x^{2}-27 x-36=0$ by finding all roots.

The polynomial is of degree 4, so there are exactly four roots for the equation.

Step 1 Graph the function to find all real roots

Find the real roots at
-1 and 4.

Step 2 Use synthetic division to simplify the polynomial.

$$
\begin{array}{c|cccccc}
-1 & 1 & -3 & 5 & -27 & -36 & \text { Use } x=-1 \text {, the factor }(x+1) \text {, } \\
& -1 & 4 & -9 & 36
\end{array} \quad \text { for synthetic division. }
$$

The simplified polynomial is now: $(x+1)\left(x^{3}-4 x^{2}+9 x-36\right)$

Step 3 Use synthetic division to simplify the polynomial with the other root.

The simplified polynomial is now: $(x+1)(x-4)\left(x^{2}+9\right)$

Step 4 Solve $x^{2}+9=0$ to find the remaining roots.

$$
\begin{array}{r}
x^{2}+9=0 \\
x^{2}=-9 \\
x= \pm 3 i
\end{array}
$$

The fully factored form of the equation is
$(x+1)(x-4)(x+3 i)(x-3 i)=0$. The solutions are $4,-1,3 i,-3 i$.

Solve $x^{4}+5 x^{3}+13 x^{2}+15 x+6=0$ by finding all roots.

The polynomial is of degree 4, so there are exactly four roots for the equation.

Step 1 Graph the function to find all real roots

There is a double root at $x=-1$

Step 2 Use synthetic division to simplify the polynomial.

$$
\begin{array}{cccccccc}
-1 & 1 & 5 & 13 & 15 & 6 \\
& -1 & -4 & -9 & -6 \\
\hline 1 & 4 & 9 & 6 & 0 & & \begin{array}{l}
\text { Use } x=-1, \text { the factor }(x+1) \text {, } \\
\text { for synthetic division. }
\end{array}
\end{array}
$$

The simplified polynomial is now: $(x+1)\left(x^{3}+4 x^{2}+9 x+6\right)$

Step 3 Use synthetic division to simplify the polynomial with the other root.

| -1 | $\begin{array}{cccc}1 & 4 & 9 & 6 \\ & -1 & -3 & -6\end{array}$ | $\begin{array}{l}\text { Use } x=-1 \text {, the factor }(x+1) \text {, for } \\ \text { synthetic division (again) }\end{array}$ | |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 6 | 0 |$\quad \begin{aligned} & \end{aligned}$

The simplified polynomial is now: $(x+1)(x+1)\left(x^{2}+3 x+6\right)$

Step 4 Solve $x^{2}+3 x+6=0$ to find the remaining roots.

$$
\begin{array}{ll}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & \text { Write the Quadratic Formula. } \\
x=\frac{-3 \pm \sqrt{3^{2}-4(1)(6)}}{2(1)} & \text { Substitute and simplify. } \\
x=\frac{-3 \pm \sqrt{9-24}}{2} & \text { Write as } 2 \text { solutions. } \\
x=\frac{-3+\sqrt{-15}}{2} & x=\frac{-3-\sqrt{-15}}{2} \quad \text { Simplify. } \\
x=-1.5+1.936 i \quad x=-1.5-1.936 i
\end{array}
$$

The fully factored form of the equation is
$(x+1)(x+1)(x+(-1.5+1.936 i))(x-(-1.5-1.936 i))=0$. The solutions are -1 mult. of $2,-1.5+1.936 i,-1.5-1.936 i$

