Solving Rational Inequalities

Solve the following rational inequalities.

1) $\frac{9}{x-4} \geq-6$

$$
\text { 2) } \frac{7}{x+5}<\frac{8}{x+6}
$$

3) $\frac{1}{x-2}+\frac{1}{x^{2}-7 x+10}>\frac{6}{x-2}$
4) When successful new software is first introduced, the weekly sales generally increase rapidly for a period of time and then begin to decrease. Suppose that the weekly sales S (in thousands of units) t weeks after the software is introduced are given by the equation: $S=\frac{200 t}{t^{2}+100}$. When will sales be 8 thousand units per week or more?
5) A drug is injected into the bloodstream of a patient through her right arm. The concentration (in milligrams per milliliter) of the drug in the bloodstream of the left arm t hours after the injection is given approximately by the equation: $C=\frac{0.12 t}{t^{2}+2}$. When will the concentration of the drug in the left arm be $0.04 \mathrm{mg} / \mathrm{ml}$ or greater?
6) The number of coyotes living on a ranch in west Texas is modeled by the equation: $P(t)=\frac{235 t}{t+15}$ where $\mathrm{t}=0$ is the year 1850. Approximately what year does the population of coyotes reach 170? For what years is the coyote population less than 200? What is the horizontal asymptote of $\mathrm{P}(\mathrm{t})$, and what does it mean within the context of the problem?
