Solving Square Root Equations

Solve the equation $5+\sqrt{x+1}=16$

$$
\begin{array}{rlrl}
5+\sqrt{x+1}=16 & \\
\sqrt{x+1}=16-5 & & \text { Subtract } 5 . \\
\sqrt{x+1}=11 & & \text { Simplify. } \\
(\sqrt{x+1})^{2} & =(11)^{2} & & \text { Square both sides. } \\
x+1 & =121 & & \text { Simplify. } \\
x=120 & & \text { Solve for } x .
\end{array}
$$

Check

\[

\]

Solve the equation $\sqrt{2 x-3}+12=18$

$$
\begin{array}{ll|r}
\sqrt{2 x-3}+12=18 & \text { Check } \\
\sqrt{2 x-3}=18-12 & \text { Subtract 12. } & \sqrt{2 x-} \\
\sqrt{2 x-3}=6 & \text { Simplify. } & \\
\sqrt{2 x-3}^{2}=6^{2} & \text { Square both sides. } & \\
2 x-3=36 & \text { Simplify. } \\
2 x=39 & \text { Solve for } x . & \\
x=19.5 & &
\end{array}
$$

Solve the equation $\sqrt{7 x+2}=3 \sqrt{3 x-2}$

$$
\begin{aligned}
\sqrt{7 x+2} & =3 \sqrt{3 x-2} & & \\
(\sqrt{7 x+2})^{2} & =(3 \sqrt{3 x-2})^{2} & & \text { Square both } \\
7 x+2 & =9(3 x-2) & & \text { Simplify. } \\
7 x+2 & =27 x-18 & & \text { Distribute. } \\
20 & =20 x & & \text { Solve for } x . \\
1 & =x & &
\end{aligned}
$$

Solve the equation $\sqrt{-3 x+33}=5-x$

$$
\begin{aligned}
\sqrt{-3 x+33} & =5-x & & \\
(\sqrt{-3 x+33})^{2} & =(5-x)^{2} & & \text { Square both sides. } \\
-3 x+33 & =25-10 x+x^{2} & & \text { Simplify. } \\
0 & =x^{2}-7 x-8 & & \text { Write in standard form. } \\
0 & =(x-8)(x+1) & & \text { Factor. } \\
x-8 & =0 \text { or } x+1=0 & & \text { Solve for } x . \\
x & =8 \text { or } x & =-1 &
\end{aligned}
$$

Check your answers

$$
\frac{\sqrt{-3 x+33}=5-x}{\sqrt{-3(8) x+33}} \begin{array}{r|l}
5-8 \\
3 & -3 \mathbf{x}
\end{array}
$$

$$
\begin{array}{r|c}
\sqrt{-3 x+33}=5-x \\
\hline \sqrt{-3(-1)+33} & 5-(-1) \\
6 & 6
\end{array}
$$

The only solution is $x=-1$ because $x=8$ is extraneous.

Why is $x=8$ extraneous？

Look at the graph．

```
Floti F"lote Flotz
*1日曹名
(1) E= (-3x+33)
W3=
N4=
&5=
*G=
va=
```


These two graphs intersect when $\mathrm{x}=-1$ ．

What about the $\mathrm{x}=8$ ？

When we graphed the equations, we only graphed the positive square root. This time include the negative square root.

Now we see the extra answer, $x=8$. It was for the negative square root.

Extraneous solution: A solution that does not solve the original equation.

Solve the equation $\sqrt{7 x-54}-x=-6$

$$
\begin{aligned}
\sqrt{7 x-54}=x-6 & \text { Isolate the root } \\
(\sqrt{7 x-54})^{2}=(x-6)^{2} & \text { Square both sides. } \\
7 x-54=x^{2}-12 x+90 & \text { Simplify. } \\
0=x^{2}-19 x+90 & \text { Write in standard form. } \\
0=(x-10)(x-9) & \text { Factor. } \\
x-10=0 \text { and } x-9=0 & \text { Solve for } x . \\
x=10 \text { and } x=9 &
\end{aligned}
$$

Check your answers.

$$
\left.\right)=-6 .
$$

Both $x=10$ and $x=9$ are solutions.

Solve the equation $4+\sqrt{-3 m+10}=m$

$$
\begin{array}{rlrl}
\sqrt{-3 m+10} & =m-4 & & \text { Isolate the root } \\
(\sqrt{-3 m+10})^{2} & =(m-4)^{2} & & \text { Square both sides. } \\
-3 m+10 & =m^{2}-8 m+16 & & \text { Simplify. } \\
0=m^{2}-5 x+6 & & \text { Write in standard form. } \\
0=(m-3)(m-2) & & \text { Factor. }
\end{array}
$$

$$
m-3=0 \text { and } m-2=0 \quad \text { Solve for } m \text {. }
$$

$$
m=3 \text { and } m=2
$$

Check your answers.

$$
\begin{array}{rlrl}
4+\sqrt{-3 m+10} & =m & 4+\sqrt{-3 m+10} & =m \\
4+\sqrt{-3(3)+10} & =3 & 4+\sqrt{-3(2)+10} & =2 \\
4+\sqrt{-9+10} & =3 & 4+\sqrt{-6+10} & =2 \\
5 & =3 \times & 6 & =2
\end{array}
$$

Neither $\mathrm{x}=3$ nor $\mathrm{x}=2$ are solutions; they are both extraneous.

