Standard to Vertex Form

Convert to vertex form: $y=2 x^{2}+4 x-9$
Identify the axis of symmetry:

$$
\begin{aligned}
& x=\frac{-b}{2 a} \\
& x=\frac{-(4)}{2(2)} \\
& x=\frac{-4}{4}=-1
\end{aligned}
$$

$$
\begin{aligned}
& f(1)=2(-1)^{2}+4(-1)-9 \\
& f(1)=2-4-9 \\
& f(1)=-11
\end{aligned}
$$

Vertex: (-1, -11)
$y=2(x+1)^{2}-11 \quad$ Axis of Symmetry: $x=-1$

Convert to vertex form: $y=\frac{-3}{2} x^{2}-9 x+2$

$$
\begin{array}{ll}
x=\frac{-b}{2 a} & f(-3)=\frac{-3}{2}(-3)^{2}-9(-3)+2 \\
x=\frac{-(-9)}{2(-3 / 2)} & f(-3)=-13.5+27+2 \\
x=\frac{9}{-3}=-3 & f(-3)=15.5 \\
& \text { Vortoy. (-2 15 5) }
\end{array}
$$

Vertex: $(-3,15.5)$

$$
y=-3(x+3)^{2}+15.5
$$

A golf ball is hit from an elevated location such that its height, in feet, is modeled by:

$$
h(x)=\frac{-2}{525} x^{2}+\frac{4}{3} x+22
$$

Determine the maximum height of the ball.

$$
\begin{array}{ll}
x=\frac{-b}{2 a} & h(175)=\frac{-2}{525}(175)^{2}+\frac{4}{3}(175)+22 \\
x=\frac{-(4 / 3)}{2(-2 / 525)} & h(175)=\frac{416}{3}=138 . \overline{6}
\end{array}
$$

$x=175$
The maximum height of the ball is $138 . \overline{6}$ feet.

The axis of symmetry for $y=a x^{2}+5 x-10$ is $x=-9$. What is the value of a ?

$$
\begin{gathered}
x=\frac{-b}{2 a} \\
-9=\frac{-(5)}{2(a)} \\
-9=\frac{-5}{2 a} \\
-18 a=-5
\end{gathered}
$$

$$
a=\frac{5}{18}
$$

