Rules for Transformations in Function Notation

A handy chart is provided on the next slide with all of the transformations in function notation.

Rules for Transformations of Functions If $f(x)$ is the original function, $k > 0$, $h > 0$, $a > 0$, $b > 0$:	
Function	Transformation of the graph of f(x)
f(x) + k	Shift f(x) upward k units
f(x) - k	Shift f(x) downward k units
f(x + h)	Shift f(x) to the left h units
f(x - h)	Shift f(x) to the right h units
-f(x)	Reflect f(x) over the x-axis
f(-x)	Reflect f(x) over the y-axis
a · f(x), a > 1	Stretch f(x) vertically by a factor of a
$a \cdot f(x), 0 < a < 1$	Compress f(x) vertically by a factor of a
f(bx), b > 1	Compress $f(x)$ horizontally by a factor of $\frac{1}{b}$
f(bx), 0 < b < 1	Stretch $f(x)$ horizontally by a factor of $\frac{1}{b}$

Horizontal shift: f(x – h)

Note: Always move the opposite direction of the sign. f(x + 2) makes you think you should move to the right, but you really move left.

Horizontal stretch/compression: f(bx)Note: Always use the reciprocal of the number. For example, f(2x) means $b = \frac{1}{2}$.

Vertical stretches and horizontal compressions have the effect of making the graph narrower.

A vertical stretch pulls the graph away from the x-axis (narrowing).

A vertical compression pushes the graph toward the x-axis (widening).

A horizontal stretch pulls the graph away from the y-axis (widening).

A horizontal compression pushes the graph toward to y-axis (narrowing).

Write each transformation in function notation.

g(x) is shifted up 3 units and vertically compressed by 1/3.

$$\frac{1}{3}g(x) + 3$$

1

f(x) is shifted right 1 unit and reflected over the x-axis

-f(x-1)

h(x) is horizontally stretched by 3, shifted to the left 2 units, and shifted down 4.

$$h\left(\frac{1}{3}(x+2)\right) - 4$$

Identify the transformations shown below. -4f(x) + 3

Reflect over the x-axis, vertical stretch by 4, shift up 3.

g(-5x)

Reflect over the y-axis, horizontal compression by $\frac{1}{5}$.

$$h(x+4) - 2$$

Shift down 2 and shift left 4.