Rules for Transformations in Function Notation

A handy chart is provided on the next slide with all of the transformations in function notation.

Rules for Transformations of Functions If $f(x)$ is the original function, $k>0, h>0, a>0, b>0:$	
Function	Transformation ofthe graphof $f(x)$
$f(x)+k$	Shift $f(x)$ upward k units
$f(x)-k$	Shift $f(x)$ downward k units
$f(x+h)$	Shift $f(x)$ to the left h units
$f(x-h)$	Shift $f(x)$ to the right h units
$-f(x)$	Reflect $f(x)$ over the x-axis
$f(-x)$	Reflect $f(x)$ over the y-axis
$a \cdot f(x), a>1$	Stretch $f(x)$ vertically by a factor of a
$a \cdot f(x), 0<a<1$	Compress $f(x)$ vertically by a factor of a
$f(b x), b>1$	Compress $f(x)$ horizontally by a factor of $\frac{1}{b}$
$f(b x), 0<b<1$	Stretch $f(x)$ horizontally by a factor of $\frac{1}{b}$

Horizontal shift: $f(x-h)$
Note: Always move the opposite direction of the sign. $f(x+2)$ makes you think you should move to the right, but you really move left.

Horizontal stretch/compression: $\mathrm{f}(\mathrm{bx})$
Note: Always use the reciprocal of the number. For example, $f(2 x)$ means $b=1 / 2$.

Vertical stretches and horizontal compressions have the effect of making the graph narrower.

A vertical stretch pulls the graph away from the x-axis (narrowing).

A vertical compression pushes the graph toward the x -axis (widening).

A horizontal stretch pulls the graph away from the y-axis (widening).

A horizontal compression pushes the graph toward to y -axis (narrowing).

Write each transformation in function notation.

 $g(x)$ is shifted up 3 units and vertically compressed by $1 / 3$.$$
\frac{1}{3} g(x)+3
$$

$f(x)$ is shifted right 1 unit and reflected over the x-axis

$$
-f(x-1)
$$

$h(x)$ is horizontally stretched by 3 , shifted to the left 2 units, and shifted down 4.

$$
h\left(\frac{1}{3}(x+2)\right)-4
$$

Identify the transformations shown below.

$-4 f(x)+3$
Reflect over the x-axis, vertical stretch by 4, shift up 3.

$$
g(-5 x)
$$

Reflect over the y-axis, horizontal compression by $\frac{1}{5}$.

$$
h(x+4)-2
$$

Shift down 2 and shift left 4.

