Transformations of Cubic and Cube Root Functions

Name: \qquad

The following are examples and non-examples of the two graphs shown above. Write " T " in the blank if the statement is true. Write " F " in the blank in the statement is false. Provide a justification in writing to explain each false statement.

Examples and Non-examples

Justification

1. $f(x)$ is a cube root function and $g(x)$ is a cubic function.
2. $f(x)$ has been shifted 2 units right and 4 units down
3. The transformation $-f(x)$ is applied to create the function $j(x)$. The increasing interval for $j(x)$ is the same as the increasing interval for $f(x)$.
4. $f(x)$ was reflected either vertically or horizontally to create the graph shown above.
5. The transformation $g(x+2)$ is applied to create the function $h(x)$. The y-intercept of $h(x)$ is greater than the y-intercept of $g(x)$.
6. A possible equation for $f(x)$ as graphed above is $f(x)=(x+2)^{3}-4$.
7. $g(x)$ has been stretch vertically by a factor of 2 .
8. The transformation $1 / 2 f(-x)$ is applied to create the function $k(x)$. The x-intercept of $k(x)$ is greater than the x-intercept of $f(x)$.
9. A possible equation for $g(x)$ as graphed above is $g(x)=\sqrt[3]{(x+4)}+2$.
10. $f(x)$ and $g(x)$ are inverses.
11) $f(x)=-\frac{1}{2} \sqrt[3]{x+4}+1$

\qquad
Increasing: \qquad Decreasing: \qquad
Domain: \qquad Range: \qquad
End behaviors:
Transformations: \qquad
\qquad
12) $g(x)=\left(\frac{-1}{2}(x-2)\right)^{3}-4$

Vertex:

\qquad
Increasing: \qquad Decreasing: \qquad
Domain: \qquad Range: \qquad
End behaviors:
Transformations: \qquad
13) Graph $f(x)=-\frac{1}{2} x^{3}-3$. Find the inverse $f^{-1}(x)$ and graph it on the same coordinate plane.A

Write the transformations for $\mathrm{f}(\mathrm{x})$:
\qquad
\qquad
Write the transformations of $\mathrm{f}^{-1}(\mathrm{x})$:

Compare the transformations between $f(x)$ and $f-1(x)$:

