## Vertex Form of a Quadratic

The vertex of a parabola is the absolute $\mathrm{max} / \mathrm{min}$, the relative $\mathrm{max} / \mathrm{min}$ and the point where the graph changes increasing/decreasing

A line of symmetry can be drawn through the vertex.


## Vertex Form of a Quadratic Function


a indicates a reflection across the $x$-axis and/or a vertical stretch or compression.

The vertex of the parabola is at the point $(h, k)$.

The axis of symmetry is the line $x=h$.

If " $a$ " is positive...

- The graph opens upward
- The vertex is the absolute and relative minimum


If "a" is negative...

- The graph opens downward
- The vertex is the absolute and relative maximum


Graph the equation $\mathrm{y}=(\mathrm{x}+2)^{2}-3$
The vertex is $(-2,-3)$


Write the equation of the parabola in vertex form.

$$
y=-(x+2)^{2}+1
$$



Graph the equation $y=2(x+1)^{2}-4$


Example) Write the vertex form of the equation given the following points:
Vertex: $(-3,5)$ Other points: $(-1,13),(0,23)$

$$
\begin{gathered}
f(x)=a(x-h)^{2}+k \\
f(x)=a(x+3)^{2}+5 \\
13=a(-1+3)^{2}+5 \\
13=4 a+5 \\
8=4 a \\
2=a
\end{gathered}
$$

Sub. the vertex into $h$ and $k$
Sub. the $x$ and $y$ values from one point in for $x$ and $y$
Solve for a: $(-1+3)^{2}=4$
Solve for a: subtract 5
Solve for a: divide by 4

$$
f(x)=2(x+3)^{2}+5
$$

Sub $a, h$, and $k$ for final answer

Write the equation of the parabola in vertex form.


$$
\begin{gathered}
f(x)=a(x-h)^{2}+k \\
f(x)=a(x-1)^{2}-4 \\
-3=a(3-1)^{2}-4 \\
-3=4 a-4 \\
1=4 a \\
\frac{1}{4}=a \\
f(x)=\frac{1}{4}(x-1)^{2}-4
\end{gathered}
$$

Sub. the vertex into $h$ and $k$ Sub. the $x$ and $y$ values from one point in for $x$ and $y$
Solve for a: $(3-1)^{2}=4$
Solve for a: add 4
Solve for a: divide by 4

Sub $a, h$, and $k$ for final answer

## Example) Write the vertex form of the equation

 given the following table.

The point $(1,1)$ is the vertex. Because $f(-2)=f(4)$, the axis of symmetry has to be in the middle of them.

$$
\begin{gathered}
f(x)=a(x-h)^{2}+k \\
f(x)=a(x-1)^{2}+1 \\
-3=a(4-1)^{2}+1 \\
-3=9 a+1 \\
-4=9 a \\
\frac{-4}{9}=a \\
f(x)=\frac{-4}{9}(x-1)^{2}+1
\end{gathered}
$$

Sub. the $x$ and $y$ values from one point in for $x$ and $y$
Solve for a: $(4-1)^{2}=9$
Solve for a: subtract 1
Solve for a: divide by 9

Sub $a, h$, and $k$ for final answer

Write the equation of the parabola in vertex form.


$$
\begin{gathered}
f(x)=a(x-h)^{2}+k \\
f(x)=a(x+2)^{2}+4 \\
-2=a(1+2)^{2}+4 \\
-2=9 a+4 \\
-6=9 a \\
\frac{-2}{3}=a \\
f(x)=\frac{-2}{3}(x+2)^{2}+4
\end{gathered}
$$

Sub. the $x$ and $y$ values from one point in for x and y
Solve for a: $(1+2)^{2}=9$
Solve for a: subtract 4
Solve for a: divide by 9

Sub a, h , and k for final answer

