Vertex to Standard Form of a Quadratic

Standard form of a quadratic:

$$
y=a x^{2}+b x+c
$$

a is the vertical
c is the y-intercept stretch/compression
(the same as vertex form)

The x^{2} always goes first, followed by x, and the constant is last.

The x-coordinate of the vertex of a parabola in standard form can be found by using:

$$
x=\frac{-b}{2 a}
$$

Find the x-coordinate of the vertex for the equation: $y=3 x^{2}-4 x+1$

$$
\begin{aligned}
& x=\frac{-b}{2 a} \\
& x=\frac{-(-4)}{2(3)} \\
& x=\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

Use order of operation (PEMDAS) to convert from vertex to standard form:

1) Square the parenthesis (Exponents)
2) Distribute the a (Multiplication)
3) Combine like terms (Add/Subtract)

Convert to standard form: $y=-2(x-4)^{2}+3$

$$
\begin{aligned}
& (x-4)(x-4) \\
& x^{2}-4 x-4 x+16 \\
& x^{2}-8 x+16 \\
& y=-2\left(x^{2}-8 x+16\right)+3
\end{aligned}
$$

$y=-2 x^{2}+16 x-32+3 \quad$ Distribute the -2
$y=-2 x^{2}+16 x-29$

$$
\text { Re-write }(x-4)^{2} \text { as }
$$

$$
(x-4)(x-4) \text { and FOIL }
$$

Substitute $x^{2}-8 x+16$ in for $(x-4)^{2}$
$(x-4)(x-4)$ and FOIL

Combine like terms

Convert to standard form: $y-4=\frac{1}{2}(x+3)^{2}$
$(x+3)(x+3)$
$x^{2}+3 x+3 x+9$
$x^{2}+6 x+9$
$y-4=\frac{1}{2}\left(x^{2}+6 x+9\right)$
Re-write $(x+3)^{2}$ as
$(x+3)(x+3)$ and FOIL

Substitute $x^{2}+6 x+9$ in for $(x+3)^{2}$
$y-4=\frac{1}{2} x^{2}+3 x+4.5$
$y=\frac{1}{2} x^{2}+3 x+8.5$

Distribute the $\frac{1}{2}$
Add 4 to both side

Convert to standard form: $y=\frac{-1}{3}(2 x-6)^{2}-6$
$(2 x-6)(2 x-6)$
$4 x^{2}-12 x-12 x+36$
$4 x^{2}-24 x+36$
$y=\frac{-1}{3}\left(4 x^{2}-24 x+36\right)-6$ Sub. $4 x^{2}-24 x+36$ in for $(2 x-6)^{2}$
$y=\frac{-4}{3} x^{2}+8 x-12-6$
$y=\frac{-4}{3} x^{2}+8 x-18$

Re-write $(2 x-6)^{2}$ as
$(2 x-6)(2 x-6)$ and FOIL

Distribute the $\frac{-1}{3}$
Combine like terms

