Vertical and Horizontal Parabolas

Every point on a parabola is equidistant from a point called the focus and a line called the directrix.

The vertex of a parabola is in the middle of the focus and directrix.

The focus and directrix are both " p " units away from the vertex where:

$$
y=\frac{1}{4 p}(x-h)^{2}+k
$$

So, $\mathrm{a}=\frac{1}{4 p}$ in vertex form.

Draw the graph of $y=\frac{1}{8}(x-2)^{2}-3$ including the focus and directrix.

$$
\frac{1}{8}=\frac{1}{4 p}
$$

So, $p=2$

Given the equation $y=-2(x+1)^{2}+2$, determine the focus and directrix.
$2=\frac{1}{4 p}$ So, $8 p=1$, and $p=\frac{1}{8}$
The focus is the point ($-1,1.875$).
The graph opens downward, so the focus is below the vertex.

The directrix is the line $y=2.125$

Write the equation of the parabola that has a vertex $(3,6)$ and a focus $(3,3)$
$p=3$ because the focus is three units away from the vertex.

The graph opens downward because the focus is below the vertex.

$$
f(x)=\frac{-1}{12}(x-3)^{2}+6
$$

Graph the equation $4(y-3)=(x+1)^{2}$. Include the focus and directrix.
$y-3=\frac{1}{4}(x+1)^{2}$ Solve for y
$y=\frac{1}{4}(x+1)^{2}+3$
Vertex: (-1, 3)
Hor. Comp. by $1 / 4$
$a=\frac{1}{4 p}$ Solve for p
$\frac{1}{4}=\frac{1}{4 p}$
$\mathrm{p}=1$

Graph the equation $-y+4=\frac{1}{9}(x+2)^{2}$. Include the focus and directrix.
$-y=\frac{1}{9}(x+2)^{2}-4 \quad$ Solve for y
$y=\frac{-1}{9}(x+2)^{2}+4$
Vertex: $(-2,4)$
Hor. Comp. by 1/9
$\mathrm{a}=\frac{1}{4 p}$ Solve for p
$\frac{1}{9}=\frac{1}{4 p}$
$4 \mathrm{p}=9$
$p=2.25$

Parabolas can open left and right.

Equation for a horizontal parabola:

$$
x=\frac{1}{4 p}(y-k)^{2}+h
$$

Where k is the vertical shift (use opp. sign) and h is the horizontal shift.

The " a " value represents a horizontal stretch/compression

Determine the vertex for the equations:

1) $x=2(y+3)^{2}-1$

Vertex: (-1, -3)
2) $x-3=-\frac{1}{3}(y-1)^{2}$
$x=-\frac{1}{3}(y-1)^{2}+3$
Vertex: $(3,1)$
3) $5 x-25=(y+2)^{2}$
$5 x=(y+2)^{2}+25$
$x=\frac{1}{5}(y+2)^{2}+5$
Vertex: $(5,-2)$

Graph the equation $x=\frac{1}{16}(y+1)^{2}-3$

Graph the equation $-8 x+16=(y+3)^{2}$

