Vertical and Horizontal Parabolas

Every point on a parabola is equidistant from a point called the **focus** and a line called the **directrix**.

The vertex of a parabola is in the middle of the focus and directrix. 2^{+}

The focus and directrix are both "p" units away from the vertex where:

$$y = \frac{1}{4p}(x-h)^2 + k$$

So,
$$a = \frac{1}{4p}$$
 in vertex form.

Draw the graph of $y = \frac{1}{8}(x-2)^2 - 3$ including the focus and directrix. 1 $\overline{8} = \overline{4p}$ So, p = 2

Given the equation $y = -2(x + 1)^2 + 2$, determine the focus and directrix.

$$2 = \frac{1}{4p}$$
 So, 8p = 1, and p = $\frac{1}{8}$

The focus is the point (-1, 1.875). The graph opens downward, so the focus is below the vertex.

The directrix is the line y = 2.125

Write the equation of the parabola that has a vertex (3, 6) and a focus (3, 3)

p = 3 because the focus is three units
away from the vertex.

The graph opens downward because the focus is below the vertex.

$$f(x) = \frac{-1}{12}(x-3)^2 + 6$$

Graph the equation $4(y - 3) = (x + 1)^2$. Include the focus and directrix. $y - 3 = \frac{1}{4}(x + 1)^2$ Solve for y $y = \frac{1}{4}(x+1)^2 + 3$ Vertex: (-1, 3) Hor. Comp. by 1/4 $a = \frac{1}{4p}$ Solve for p $=\frac{1}{4p}$ p = 1

Graph the equation $-y + 4 = \frac{1}{2}(x + 2)^2$. Include the focus and directrix. $-y = \frac{1}{9}(x + 2)^2 - 4$ Solve for y $y = \frac{-1}{9}(x+2)^2 + 4$ Vertex: (-2, 4) Hor. Comp. by 1/9 $a = \frac{1}{4p}$ Solve for p $\frac{1}{9} = \frac{1}{4p}$ 4p = 9p = 2.25

Parabolas can open left and right.

Equation for a horizontal parabola:

$$x = \frac{1}{4p}(y-k)^2 + h$$

Where k is the vertical shift (use opp. sign) and h is the horizontal shift.

The "a" value represents a horizontal stretch/compression

Determine the vertex for the equations: 1) $x = 2(y + 3)^2 - 1$ Vertex: (-1, -3)

2)
$$x - 3 = -\frac{1}{3}(y - 1)^2$$

 $x = -\frac{1}{3}(y - 1)^2 + 3$
Vertex: (3, 1)
3) $5x - 25 = (y + 2)^2$
 $5x = (y + 2)^2 + 25$
 $x = \frac{1}{5}(y + 2)^2 + 5$

Vertex: (5, -2)

Graph the equation $x = \frac{1}{16}(y + 1)^2 - 3$

Graph the equation $-8x + 16 = (y + 3)^2$

