Writing Absolute Value as Piecewise

 Absolute value functions can be written as two separate lines.Piecewise function: A function made up of pieces
of other functions. i.e. $\mathrm{f}(\mathrm{x})= \begin{cases}2 x-1, & x<1 \\ x^{2} & , x \geq 1\end{cases}$

Use the point-slope formula $y-y_{1}=m\left(x-x_{1}\right)$ and common sense to write the absolute value as piecewise.

Write $f(x)=|x-1|+2$ as a piecewise function.

First find the vertex: $(1,2)$ and the slopes: 1 and -1

Use the vertex and slopes in the point-slope formula:
Positive Slope
Negative Slope
$y-y_{1}=m\left(x-x_{1}\right)$
$y-2=1(x-1)$
$y-2=x-1$
$y-y_{1}=m\left(x-x_{1}\right)$
$y-2=-1(x-1)$
$y-2=-x+1$
$y=x+1$
$y=-x+3$

The graph of $f(x)=|x-1|+2$ opens upward so the graph looks like this:

$$
m=-1 \quad m=1
$$

The negative slope is to the left of the vertex (when x is less than the vertex (when x is greater than or equal to 1).

$$
f(x)=\left\{\begin{array}{c}
-x+3, x \leq 1 \\
x+1, x \geq 1
\end{array}\right.
$$

Write $f(x)=-|3 x+9|+5$ as a piecewise function.

Factor the 3: $f(x)=-|3(x+3)|+5$
Find the vertex: $(-3,5)$ and the slopes: 3 and -3
Use the vertex and slopes in the point-slope formula:

Positive Slope
$y-y_{1}=m\left(x-x_{1}\right)$
$y-5=3(x--3)$
$y-5=3(x+3)$
$y-5=3 x+9$
$y=3 x+14$

Negative Slope
$y-y_{1}=m\left(x-x_{1}\right)$
$y-5=-3(x-3)$
$y-5=-3(x+3)$
$y-5=-3 x-9$
$y=-3 x-4$

The graph of $f(x)=-|3 x+9|+5$ opens downward so the graph looks like this:

$$
(-3,5)
$$

$$
\mathrm{m}=3
$$

The negative slope is to the right of the vertex (when x is less than or equal to -3). The positive slope is to the left of the vertex when x is greater than or equal to -3 .

$$
f(x)=\left\{\begin{array}{c}
3 x+14, x \leq-3 \\
-3 x-4, x \geq-3
\end{array}\right.
$$

Write $f(x)=5|3-x|$ as a piecewise function.
Factor the -1: $f(x)=5|-x+3| \rightarrow f(x)=5|-(x-3)|$
Find the vertex: $(3,0)$ and the slopes: 5 and -5
Use the vertex and slopes in the point-slope formula:

Positive Slope
$y-y_{1}=m\left(x-x_{1}\right)$
$y-0=5(x-3)$
$y=5 x-15$

Negative Slope

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-0=-5(x-3)
$$

$$
y=-5 x+15
$$

The graph of $f(x)=5|3-x|$ opens up so the graph looks like this:

$$
m=-5 \quad m=5
$$

The negative slope is to the right of the vertex (when x is less than
$(3,0)$ or equal to 3). The positive slope is to the left of the vertex when x is greater than or equal to 3 .

$$
f(x)=\left\{\begin{array}{l}
-5 x+15, x \leq 3 \\
5 x-15, x \geq 3
\end{array}\right.
$$

