Writing Rational Functions

The zeros (x-intercepts) of a rational function are where the numerator (after simplifying) equals zero.
Find the zeros of: $\mathrm{f}(\mathrm{x})=\frac{x^{2}-2 x+1}{x^{2}+8 x-9}$

$$
\begin{aligned}
& f(x)=\frac{(x-1)(x-1)}{(x+9)(x-1)} \\
& f(x)=\frac{(x-1)(x-1)}{(x+9)(x-1)} \\
& f(x)=\frac{(x-1)}{(x+9)}
\end{aligned}
$$

Factor the numerator and denominator

Cancel common factors

Set the numerator equal to 0

$$
x-1=0 \quad f(x) \text { has a zero at } x=1
$$

Find the zeros of: $\mathrm{f}(\mathrm{x})=\frac{x^{3}+x^{2}-16 x-16}{x^{2}-2 x-3}$

$$
\begin{array}{ll}
f(x)=\frac{\left(x^{2}-16\right)(x+1)}{(x-3)(x+1)} & \begin{array}{l}
\text { Factor the numerator and } \\
\text { denominator }
\end{array} \\
f(x)=\frac{(x+4)(x-4)(x+1)}{(x-3)(x+1)} & \\
f(x)=\frac{(x+4)(x-4)(x+1)}{(x-3)(x+1)} & \text { Cancel common factors } \\
f(x)=\frac{(x+4)(x-4)}{(x-3)} &
\end{array}
$$

$x+4=0$ and $x-4=0$ Set the numerator equal to 0
$f(x)$ has zeros at $x=-4$ and $x=4$

Write the equation of a rational function that:
-has a hole at $x=4$
-has a vertical asymptote at $x=2$ and $x=0$
-has a zero at $x=3$
-is positive

Hole at $\mathrm{x}=4$
$\frac{(x-4)}{(x-4)}$

VA at $x=2$ and $x=0$ $\frac{1}{(x)(x-2)}$

$$
f(x)=\frac{(x-4)(x-3)}{(x-4)(x)(x-2)}
$$

Write an equation for the following graph:

Vertical Asymptote: none
Zero at $\mathrm{x}=-2 \quad \frac{(x+2)}{1}$
Holes at $\mathrm{x}=-3, \mathrm{x}=4$

$$
\frac{(x+3)(x-4)}{(x+3)(x-4)}
$$

Slope of graph: -1/1

Equation:

$$
\mathrm{f}(\mathrm{x})=\frac{-(x+2)(x+3)(x-4)}{(x+3)(x-4)}
$$

Write the equation of the following graph:

Graph $\frac{(x-2)}{(x+1)(x-2)}$ to see that the leading coefficient should be negative.

$$
\mathrm{g}(\mathrm{x})=\frac{-(x-2)}{(x+2)(x-2)}
$$

