CALCULUS BC

WORKSHEET 1 ON VECTORS

Work the following on notebook paper. Use your calculator on problems 10 and 13c only.

1. If $x=t^{2}-1$ and $y=e^{t^{3}}$, find $\frac{d y}{d x}$.
2. If a particle moves in the $x y$-plane so that at any time $t>0$, its position vector is $\left\langle\ln \left(t^{2}+5 t\right), 3 t^{2}\right\rangle$, find its velocity vector at time $t=2$.
3. A particle moves in the $x y$-plane so that at any time t, its coordinates are given by $x=t^{5}-1$ and $y=3 t^{4}-2 t^{3}$. Find its acceleration vector at $t=1$.
4. If a particle moves in the $x y$-plane so that at time t its position vector is $\left\langle\sin \left(3 t-\frac{\pi}{2}\right), 3 t^{2}\right\rangle$, find the velocity vector at time $t=\frac{\pi}{2}$.
5. A particle moves on the curve $y=\ln x$ so that its x-component has derivative $x^{\prime}(t)=t+1$ for $t \geq 0$. At time $t=0$, the particle is at the point $(1,0)$. Find the position of the particle at time $t=1$.
6. A particle moves in the $x y$-plane in such a way that its velocity vector is $\left\langle 1+t, t^{3}\right\rangle$. If the position vector at $t=0$ is $\langle 5,0\rangle$, find the position of the particle at $t=2$.
7. A particle moves along the curve $x y=10$. If $x=2$ and $\frac{d y}{d t}=3$, what is the value of $\frac{d x}{d t}$?
8. The position of a particle moving in the $x y$-plane is given by the parametric equations $x=t^{3}-\frac{3}{2} t^{2}-18 t+5$ and $y=t^{3}-6 t^{2}+9 t+4$. For what value(s) of t is the particle at rest?
9. A curve C is defined by the parametric equations $x=t^{3}$ and $y=t^{2}-5 t+2$. Write the equation of the line tangent to the graph of C at the point $(8,-4)$.
10. A particle moves in the $x y$-plane so that the position of the particle is given by $x(t)=5 t+3 \sin t$ and $y(t)=(8-t)(1-\cos t)$ Find the velocity vector at the time when the particle's horizontal position is $x=25$.
11. The position of a particle at any time $t \geq 0$ is given by $x(t)=t^{2}-3$ and $y(t)=\frac{2}{3} t^{3}$.
(a) Find the magnitude of the velocity vector at time $t=5$.
(b) Find the total distance traveled by the particle from $t=0$ to $t=5$.
(c) Find $\frac{d y}{d x}$ as a function of x.
12. Point $P(x, y)$ moves in the $x y$-plane in such a way that $\frac{d x}{d t}=\frac{1}{t+1}$ and $\frac{d y}{d t}=2 t$ for $t \geq 0$.
(a) Find the coordinates of P in terms of t given that $t=1, x=\ln 2$, and $y=0$.
(b) Write an equation expressing y in terms of x.
(c) Find the average rate of change of y with respect to x as t varies from 0 to 4 .
(d) Find the instantaneous rate of change of y with respect to x when $t=1$.
13. Consider the curve C given by the parametric equations $x=2-3 \cos t$ and $y=3+2 \sin t$, for $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$.
(a) Find $\frac{d y}{d x}$ as a function of $t . \quad$ (b) Find the equation of the tangent line at the point where $t=\frac{\pi}{4}$.
(c) The curve C intersects the y-axis twice. Approximate the length of the curve between the two y intercepts.

Answers to Worksheet 1 on Vectors

1. $\frac{d y}{d x}=\frac{3 t^{2} e^{t^{3}}}{2 t}=\frac{3 t e^{t^{3}}}{2}$
2. $\left\langle\frac{9}{14}, 12\right\rangle$
3. $\langle 20,24\rangle$
4. $\langle-3,3 \pi\rangle$
5. $\left(\frac{5}{2}, \ln \left(\frac{5}{2}\right)\right)$
6. $(9,4)$
7. $-\frac{6}{5}$
8. $t=3$
9. $y+4=-\frac{1}{12}(x-8)$
10. $\langle 7.008,-2.228\rangle$
11. (a) $\sqrt{2600}$ or $10 \sqrt{26}$
(b) $\frac{2}{3}\left(26^{3 / 2}-1\right)$
(c) $t=\sqrt{x+3}$
12. (a) $\left(\ln (t+1), t^{2}-1\right)$
(b) $y=\left(e^{x}-1\right)^{2}-1$ or $y=e^{2 x}-2 e^{x}$.
(c) $\frac{16}{\ln 5}$
(d) 4
13. (a) $\frac{2}{3} \cot t$
(b) $y-(3+\sqrt{2})=\frac{2}{3}\left(x-\left(2-\frac{3 \sqrt{2}}{2}\right)\right)$
(c) 3.756
